This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The log x / x function is strictly decreasing on the reals greater than _e . (Contributed by Mario Carneiro, 14-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logdivlt | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → ( 𝐴 < 𝐵 ↔ ( ( log ‘ 𝐵 ) / 𝐵 ) < ( ( log ‘ 𝐴 ) / 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logdivlti | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( ( log ‘ 𝐵 ) / 𝐵 ) < ( ( log ‘ 𝐴 ) / 𝐴 ) ) | |
| 2 | 1 | ex | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) → ( 𝐴 < 𝐵 → ( ( log ‘ 𝐵 ) / 𝐵 ) < ( ( log ‘ 𝐴 ) / 𝐴 ) ) ) |
| 3 | 2 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ e ≤ 𝐴 ) → ( 𝐴 < 𝐵 → ( ( log ‘ 𝐵 ) / 𝐵 ) < ( ( log ‘ 𝐴 ) / 𝐴 ) ) ) |
| 4 | 3 | an32s | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 → ( ( log ‘ 𝐵 ) / 𝐵 ) < ( ( log ‘ 𝐴 ) / 𝐴 ) ) ) |
| 5 | 4 | adantrr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → ( 𝐴 < 𝐵 → ( ( log ‘ 𝐵 ) / 𝐵 ) < ( ( log ‘ 𝐴 ) / 𝐴 ) ) ) |
| 6 | fveq2 | ⊢ ( 𝐴 = 𝐵 → ( log ‘ 𝐴 ) = ( log ‘ 𝐵 ) ) | |
| 7 | id | ⊢ ( 𝐴 = 𝐵 → 𝐴 = 𝐵 ) | |
| 8 | 6 7 | oveq12d | ⊢ ( 𝐴 = 𝐵 → ( ( log ‘ 𝐴 ) / 𝐴 ) = ( ( log ‘ 𝐵 ) / 𝐵 ) ) |
| 9 | 8 | eqcomd | ⊢ ( 𝐴 = 𝐵 → ( ( log ‘ 𝐵 ) / 𝐵 ) = ( ( log ‘ 𝐴 ) / 𝐴 ) ) |
| 10 | 9 | a1i | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → ( 𝐴 = 𝐵 → ( ( log ‘ 𝐵 ) / 𝐵 ) = ( ( log ‘ 𝐴 ) / 𝐴 ) ) ) |
| 11 | logdivlti | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ e ≤ 𝐵 ) ∧ 𝐵 < 𝐴 ) → ( ( log ‘ 𝐴 ) / 𝐴 ) < ( ( log ‘ 𝐵 ) / 𝐵 ) ) | |
| 12 | 11 | ex | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ e ≤ 𝐵 ) → ( 𝐵 < 𝐴 → ( ( log ‘ 𝐴 ) / 𝐴 ) < ( ( log ‘ 𝐵 ) / 𝐵 ) ) ) |
| 13 | 12 | 3expa | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ e ≤ 𝐵 ) → ( 𝐵 < 𝐴 → ( ( log ‘ 𝐴 ) / 𝐴 ) < ( ( log ‘ 𝐵 ) / 𝐵 ) ) ) |
| 14 | 13 | an32s | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ∧ 𝐴 ∈ ℝ ) → ( 𝐵 < 𝐴 → ( ( log ‘ 𝐴 ) / 𝐴 ) < ( ( log ‘ 𝐵 ) / 𝐵 ) ) ) |
| 15 | 14 | adantrr | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ) → ( 𝐵 < 𝐴 → ( ( log ‘ 𝐴 ) / 𝐴 ) < ( ( log ‘ 𝐵 ) / 𝐵 ) ) ) |
| 16 | 15 | ancoms | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → ( 𝐵 < 𝐴 → ( ( log ‘ 𝐴 ) / 𝐴 ) < ( ( log ‘ 𝐵 ) / 𝐵 ) ) ) |
| 17 | 10 16 | orim12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → ( ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) → ( ( ( log ‘ 𝐵 ) / 𝐵 ) = ( ( log ‘ 𝐴 ) / 𝐴 ) ∨ ( ( log ‘ 𝐴 ) / 𝐴 ) < ( ( log ‘ 𝐵 ) / 𝐵 ) ) ) ) |
| 18 | 17 | con3d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → ( ¬ ( ( ( log ‘ 𝐵 ) / 𝐵 ) = ( ( log ‘ 𝐴 ) / 𝐴 ) ∨ ( ( log ‘ 𝐴 ) / 𝐴 ) < ( ( log ‘ 𝐵 ) / 𝐵 ) ) → ¬ ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 19 | simpl | ⊢ ( ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) → 𝐵 ∈ ℝ ) | |
| 20 | epos | ⊢ 0 < e | |
| 21 | 0re | ⊢ 0 ∈ ℝ | |
| 22 | ere | ⊢ e ∈ ℝ | |
| 23 | ltletr | ⊢ ( ( 0 ∈ ℝ ∧ e ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 < e ∧ e ≤ 𝐵 ) → 0 < 𝐵 ) ) | |
| 24 | 21 22 23 | mp3an12 | ⊢ ( 𝐵 ∈ ℝ → ( ( 0 < e ∧ e ≤ 𝐵 ) → 0 < 𝐵 ) ) |
| 25 | 20 24 | mpani | ⊢ ( 𝐵 ∈ ℝ → ( e ≤ 𝐵 → 0 < 𝐵 ) ) |
| 26 | 25 | imp | ⊢ ( ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) → 0 < 𝐵 ) |
| 27 | 19 26 | elrpd | ⊢ ( ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) → 𝐵 ∈ ℝ+ ) |
| 28 | relogcl | ⊢ ( 𝐵 ∈ ℝ+ → ( log ‘ 𝐵 ) ∈ ℝ ) | |
| 29 | rerpdivcl | ⊢ ( ( ( log ‘ 𝐵 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( log ‘ 𝐵 ) / 𝐵 ) ∈ ℝ ) | |
| 30 | 28 29 | mpancom | ⊢ ( 𝐵 ∈ ℝ+ → ( ( log ‘ 𝐵 ) / 𝐵 ) ∈ ℝ ) |
| 31 | 27 30 | syl | ⊢ ( ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) → ( ( log ‘ 𝐵 ) / 𝐵 ) ∈ ℝ ) |
| 32 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) → 𝐴 ∈ ℝ ) | |
| 33 | ltletr | ⊢ ( ( 0 ∈ ℝ ∧ e ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 0 < e ∧ e ≤ 𝐴 ) → 0 < 𝐴 ) ) | |
| 34 | 21 22 33 | mp3an12 | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 < e ∧ e ≤ 𝐴 ) → 0 < 𝐴 ) ) |
| 35 | 20 34 | mpani | ⊢ ( 𝐴 ∈ ℝ → ( e ≤ 𝐴 → 0 < 𝐴 ) ) |
| 36 | 35 | imp | ⊢ ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) → 0 < 𝐴 ) |
| 37 | 32 36 | elrpd | ⊢ ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) → 𝐴 ∈ ℝ+ ) |
| 38 | relogcl | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) | |
| 39 | rerpdivcl | ⊢ ( ( ( log ‘ 𝐴 ) ∈ ℝ ∧ 𝐴 ∈ ℝ+ ) → ( ( log ‘ 𝐴 ) / 𝐴 ) ∈ ℝ ) | |
| 40 | 38 39 | mpancom | ⊢ ( 𝐴 ∈ ℝ+ → ( ( log ‘ 𝐴 ) / 𝐴 ) ∈ ℝ ) |
| 41 | 37 40 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) → ( ( log ‘ 𝐴 ) / 𝐴 ) ∈ ℝ ) |
| 42 | axlttri | ⊢ ( ( ( ( log ‘ 𝐵 ) / 𝐵 ) ∈ ℝ ∧ ( ( log ‘ 𝐴 ) / 𝐴 ) ∈ ℝ ) → ( ( ( log ‘ 𝐵 ) / 𝐵 ) < ( ( log ‘ 𝐴 ) / 𝐴 ) ↔ ¬ ( ( ( log ‘ 𝐵 ) / 𝐵 ) = ( ( log ‘ 𝐴 ) / 𝐴 ) ∨ ( ( log ‘ 𝐴 ) / 𝐴 ) < ( ( log ‘ 𝐵 ) / 𝐵 ) ) ) ) | |
| 43 | 31 41 42 | syl2anr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → ( ( ( log ‘ 𝐵 ) / 𝐵 ) < ( ( log ‘ 𝐴 ) / 𝐴 ) ↔ ¬ ( ( ( log ‘ 𝐵 ) / 𝐵 ) = ( ( log ‘ 𝐴 ) / 𝐴 ) ∨ ( ( log ‘ 𝐴 ) / 𝐴 ) < ( ( log ‘ 𝐵 ) / 𝐵 ) ) ) ) |
| 44 | axlttri | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) | |
| 45 | 44 | ad2ant2r | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → ( 𝐴 < 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 46 | 18 43 45 | 3imtr4d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → ( ( ( log ‘ 𝐵 ) / 𝐵 ) < ( ( log ‘ 𝐴 ) / 𝐴 ) → 𝐴 < 𝐵 ) ) |
| 47 | 5 46 | impbid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → ( 𝐴 < 𝐵 ↔ ( ( log ‘ 𝐵 ) / 𝐵 ) < ( ( log ‘ 𝐴 ) / 𝐴 ) ) ) |