This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: First-countability is a local property (unlike second-countability). (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lly1stc | ⊢ Locally 1stω = 1stω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | llytop | ⊢ ( 𝑗 ∈ Locally 1stω → 𝑗 ∈ Top ) | |
| 2 | simprr | ⊢ ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) → ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) | |
| 3 | simprl | ⊢ ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) → 𝑥 ∈ 𝑢 ) | |
| 4 | 1 | ad3antrrr | ⊢ ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) → 𝑗 ∈ Top ) |
| 5 | elssuni | ⊢ ( 𝑢 ∈ 𝑗 → 𝑢 ⊆ ∪ 𝑗 ) | |
| 6 | 5 | ad2antlr | ⊢ ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) → 𝑢 ⊆ ∪ 𝑗 ) |
| 7 | eqid | ⊢ ∪ 𝑗 = ∪ 𝑗 | |
| 8 | 7 | restuni | ⊢ ( ( 𝑗 ∈ Top ∧ 𝑢 ⊆ ∪ 𝑗 ) → 𝑢 = ∪ ( 𝑗 ↾t 𝑢 ) ) |
| 9 | 4 6 8 | syl2anc | ⊢ ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) → 𝑢 = ∪ ( 𝑗 ↾t 𝑢 ) ) |
| 10 | 3 9 | eleqtrd | ⊢ ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) → 𝑥 ∈ ∪ ( 𝑗 ↾t 𝑢 ) ) |
| 11 | eqid | ⊢ ∪ ( 𝑗 ↾t 𝑢 ) = ∪ ( 𝑗 ↾t 𝑢 ) | |
| 12 | 11 | 1stcclb | ⊢ ( ( ( 𝑗 ↾t 𝑢 ) ∈ 1stω ∧ 𝑥 ∈ ∪ ( 𝑗 ↾t 𝑢 ) ) → ∃ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) |
| 13 | 2 10 12 | syl2anc | ⊢ ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) → ∃ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) |
| 14 | elpwi | ⊢ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) → 𝑡 ⊆ ( 𝑗 ↾t 𝑢 ) ) | |
| 15 | 14 | adantl | ⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) → 𝑡 ⊆ ( 𝑗 ↾t 𝑢 ) ) |
| 16 | 15 | sselda | ⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) ∧ 𝑛 ∈ 𝑡 ) → 𝑛 ∈ ( 𝑗 ↾t 𝑢 ) ) |
| 17 | 4 | adantr | ⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) → 𝑗 ∈ Top ) |
| 18 | simpllr | ⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) → 𝑢 ∈ 𝑗 ) | |
| 19 | restopn2 | ⊢ ( ( 𝑗 ∈ Top ∧ 𝑢 ∈ 𝑗 ) → ( 𝑛 ∈ ( 𝑗 ↾t 𝑢 ) ↔ ( 𝑛 ∈ 𝑗 ∧ 𝑛 ⊆ 𝑢 ) ) ) | |
| 20 | 17 18 19 | syl2anc | ⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) → ( 𝑛 ∈ ( 𝑗 ↾t 𝑢 ) ↔ ( 𝑛 ∈ 𝑗 ∧ 𝑛 ⊆ 𝑢 ) ) ) |
| 21 | 20 | simplbda | ⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) ∧ 𝑛 ∈ ( 𝑗 ↾t 𝑢 ) ) → 𝑛 ⊆ 𝑢 ) |
| 22 | 16 21 | syldan | ⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) ∧ 𝑛 ∈ 𝑡 ) → 𝑛 ⊆ 𝑢 ) |
| 23 | dfss2 | ⊢ ( 𝑛 ⊆ 𝑢 ↔ ( 𝑛 ∩ 𝑢 ) = 𝑛 ) | |
| 24 | 22 23 | sylib | ⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) ∧ 𝑛 ∈ 𝑡 ) → ( 𝑛 ∩ 𝑢 ) = 𝑛 ) |
| 25 | 20 | simprbda | ⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) ∧ 𝑛 ∈ ( 𝑗 ↾t 𝑢 ) ) → 𝑛 ∈ 𝑗 ) |
| 26 | 16 25 | syldan | ⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) ∧ 𝑛 ∈ 𝑡 ) → 𝑛 ∈ 𝑗 ) |
| 27 | 24 26 | eqeltrd | ⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) ∧ 𝑛 ∈ 𝑡 ) → ( 𝑛 ∩ 𝑢 ) ∈ 𝑗 ) |
| 28 | ineq1 | ⊢ ( 𝑎 = 𝑛 → ( 𝑎 ∩ 𝑢 ) = ( 𝑛 ∩ 𝑢 ) ) | |
| 29 | 28 | cbvmptv | ⊢ ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) = ( 𝑛 ∈ 𝑡 ↦ ( 𝑛 ∩ 𝑢 ) ) |
| 30 | 27 29 | fmptd | ⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) → ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) : 𝑡 ⟶ 𝑗 ) |
| 31 | 30 | frnd | ⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) → ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ⊆ 𝑗 ) |
| 32 | 31 | adantrr | ⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) → ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ⊆ 𝑗 ) |
| 33 | vex | ⊢ 𝑗 ∈ V | |
| 34 | 33 | elpw2 | ⊢ ( ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ∈ 𝒫 𝑗 ↔ ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ⊆ 𝑗 ) |
| 35 | 32 34 | sylibr | ⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) → ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ∈ 𝒫 𝑗 ) |
| 36 | simprrl | ⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) → 𝑡 ≼ ω ) | |
| 37 | 1stcrestlem | ⊢ ( 𝑡 ≼ ω → ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ≼ ω ) | |
| 38 | 36 37 | syl | ⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) → ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ≼ ω ) |
| 39 | simprr | ⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑥 ∈ 𝑧 ) | |
| 40 | 3 | ad2antrr | ⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑥 ∈ 𝑢 ) |
| 41 | 39 40 | elind | ⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑥 ∈ ( 𝑧 ∩ 𝑢 ) ) |
| 42 | eleq2 | ⊢ ( 𝑣 = ( 𝑧 ∩ 𝑢 ) → ( 𝑥 ∈ 𝑣 ↔ 𝑥 ∈ ( 𝑧 ∩ 𝑢 ) ) ) | |
| 43 | sseq2 | ⊢ ( 𝑣 = ( 𝑧 ∩ 𝑢 ) → ( 𝑛 ⊆ 𝑣 ↔ 𝑛 ⊆ ( 𝑧 ∩ 𝑢 ) ) ) | |
| 44 | 43 | anbi2d | ⊢ ( 𝑣 = ( 𝑧 ∩ 𝑢 ) → ( ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ↔ ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ ( 𝑧 ∩ 𝑢 ) ) ) ) |
| 45 | 44 | rexbidv | ⊢ ( 𝑣 = ( 𝑧 ∩ 𝑢 ) → ( ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ↔ ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ ( 𝑧 ∩ 𝑢 ) ) ) ) |
| 46 | 42 45 | imbi12d | ⊢ ( 𝑣 = ( 𝑧 ∩ 𝑢 ) → ( ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ↔ ( 𝑥 ∈ ( 𝑧 ∩ 𝑢 ) → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ ( 𝑧 ∩ 𝑢 ) ) ) ) ) |
| 47 | simprrr | ⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) → ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) | |
| 48 | 47 | adantr | ⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧 ) ) → ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) |
| 49 | 4 | ad2antrr | ⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑗 ∈ Top ) |
| 50 | simpllr | ⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) → 𝑢 ∈ 𝑗 ) | |
| 51 | 50 | adantr | ⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑢 ∈ 𝑗 ) |
| 52 | simprl | ⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑧 ∈ 𝑗 ) | |
| 53 | elrestr | ⊢ ( ( 𝑗 ∈ Top ∧ 𝑢 ∈ 𝑗 ∧ 𝑧 ∈ 𝑗 ) → ( 𝑧 ∩ 𝑢 ) ∈ ( 𝑗 ↾t 𝑢 ) ) | |
| 54 | 49 51 52 53 | syl3anc | ⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧 ) ) → ( 𝑧 ∩ 𝑢 ) ∈ ( 𝑗 ↾t 𝑢 ) ) |
| 55 | 46 48 54 | rspcdva | ⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧 ) ) → ( 𝑥 ∈ ( 𝑧 ∩ 𝑢 ) → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ ( 𝑧 ∩ 𝑢 ) ) ) ) |
| 56 | 41 55 | mpd | ⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧 ) ) → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ ( 𝑧 ∩ 𝑢 ) ) ) |
| 57 | 3 | ad2antrr | ⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) ∧ 𝑛 ∈ 𝑡 ) → 𝑥 ∈ 𝑢 ) |
| 58 | elin | ⊢ ( 𝑥 ∈ ( 𝑛 ∩ 𝑢 ) ↔ ( 𝑥 ∈ 𝑛 ∧ 𝑥 ∈ 𝑢 ) ) | |
| 59 | 58 | simplbi2com | ⊢ ( 𝑥 ∈ 𝑢 → ( 𝑥 ∈ 𝑛 → 𝑥 ∈ ( 𝑛 ∩ 𝑢 ) ) ) |
| 60 | 57 59 | syl | ⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) ∧ 𝑛 ∈ 𝑡 ) → ( 𝑥 ∈ 𝑛 → 𝑥 ∈ ( 𝑛 ∩ 𝑢 ) ) ) |
| 61 | 22 | biantrud | ⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) ∧ 𝑛 ∈ 𝑡 ) → ( 𝑛 ⊆ 𝑧 ↔ ( 𝑛 ⊆ 𝑧 ∧ 𝑛 ⊆ 𝑢 ) ) ) |
| 62 | ssin | ⊢ ( ( 𝑛 ⊆ 𝑧 ∧ 𝑛 ⊆ 𝑢 ) ↔ 𝑛 ⊆ ( 𝑧 ∩ 𝑢 ) ) | |
| 63 | 61 62 | bitrdi | ⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) ∧ 𝑛 ∈ 𝑡 ) → ( 𝑛 ⊆ 𝑧 ↔ 𝑛 ⊆ ( 𝑧 ∩ 𝑢 ) ) ) |
| 64 | ssinss1 | ⊢ ( 𝑛 ⊆ 𝑧 → ( 𝑛 ∩ 𝑢 ) ⊆ 𝑧 ) | |
| 65 | 63 64 | biimtrrdi | ⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) ∧ 𝑛 ∈ 𝑡 ) → ( 𝑛 ⊆ ( 𝑧 ∩ 𝑢 ) → ( 𝑛 ∩ 𝑢 ) ⊆ 𝑧 ) ) |
| 66 | 60 65 | anim12d | ⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) ∧ 𝑛 ∈ 𝑡 ) → ( ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ ( 𝑧 ∩ 𝑢 ) ) → ( 𝑥 ∈ ( 𝑛 ∩ 𝑢 ) ∧ ( 𝑛 ∩ 𝑢 ) ⊆ 𝑧 ) ) ) |
| 67 | 66 | reximdva | ⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) → ( ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ ( 𝑧 ∩ 𝑢 ) ) → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ ( 𝑛 ∩ 𝑢 ) ∧ ( 𝑛 ∩ 𝑢 ) ⊆ 𝑧 ) ) ) |
| 68 | vex | ⊢ 𝑛 ∈ V | |
| 69 | 68 | inex1 | ⊢ ( 𝑛 ∩ 𝑢 ) ∈ V |
| 70 | 69 | rgenw | ⊢ ∀ 𝑛 ∈ 𝑡 ( 𝑛 ∩ 𝑢 ) ∈ V |
| 71 | eleq2 | ⊢ ( 𝑤 = ( 𝑛 ∩ 𝑢 ) → ( 𝑥 ∈ 𝑤 ↔ 𝑥 ∈ ( 𝑛 ∩ 𝑢 ) ) ) | |
| 72 | sseq1 | ⊢ ( 𝑤 = ( 𝑛 ∩ 𝑢 ) → ( 𝑤 ⊆ 𝑧 ↔ ( 𝑛 ∩ 𝑢 ) ⊆ 𝑧 ) ) | |
| 73 | 71 72 | anbi12d | ⊢ ( 𝑤 = ( 𝑛 ∩ 𝑢 ) → ( ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ( 𝑥 ∈ ( 𝑛 ∩ 𝑢 ) ∧ ( 𝑛 ∩ 𝑢 ) ⊆ 𝑧 ) ) ) |
| 74 | 29 73 | rexrnmptw | ⊢ ( ∀ 𝑛 ∈ 𝑡 ( 𝑛 ∩ 𝑢 ) ∈ V → ( ∃ 𝑤 ∈ ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ ( 𝑛 ∩ 𝑢 ) ∧ ( 𝑛 ∩ 𝑢 ) ⊆ 𝑧 ) ) ) |
| 75 | 70 74 | ax-mp | ⊢ ( ∃ 𝑤 ∈ ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ ( 𝑛 ∩ 𝑢 ) ∧ ( 𝑛 ∩ 𝑢 ) ⊆ 𝑧 ) ) |
| 76 | 67 75 | imbitrrdi | ⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) → ( ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ ( 𝑧 ∩ 𝑢 ) ) → ∃ 𝑤 ∈ ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
| 77 | 76 | adantrr | ⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) → ( ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ ( 𝑧 ∩ 𝑢 ) ) → ∃ 𝑤 ∈ ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
| 78 | 77 | adantr | ⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧 ) ) → ( ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ ( 𝑧 ∩ 𝑢 ) ) → ∃ 𝑤 ∈ ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
| 79 | 56 78 | mpd | ⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧 ) ) → ∃ 𝑤 ∈ ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) |
| 80 | 79 | expr | ⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) ∧ 𝑧 ∈ 𝑗 ) → ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
| 81 | 80 | ralrimiva | ⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) → ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
| 82 | breq1 | ⊢ ( 𝑦 = ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) → ( 𝑦 ≼ ω ↔ ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ≼ ω ) ) | |
| 83 | rexeq | ⊢ ( 𝑦 = ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) → ( ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ∃ 𝑤 ∈ ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) | |
| 84 | 83 | imbi2d | ⊢ ( 𝑦 = ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) → ( ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ↔ ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 85 | 84 | ralbidv | ⊢ ( 𝑦 = ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) → ( ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 86 | 82 85 | anbi12d | ⊢ ( 𝑦 = ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) → ( ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ↔ ( ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 87 | 86 | rspcev | ⊢ ( ( ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ∈ 𝒫 𝑗 ∧ ( ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) → ∃ 𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 88 | 35 38 81 87 | syl12anc | ⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) → ∃ 𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 89 | 13 88 | rexlimddv | ⊢ ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) → ∃ 𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 90 | 89 | 3adantr1 | ⊢ ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑢 ⊆ ∪ 𝑗 ∧ 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) → ∃ 𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 91 | simpl | ⊢ ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) → 𝑗 ∈ Locally 1stω ) | |
| 92 | 1 | adantr | ⊢ ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) → 𝑗 ∈ Top ) |
| 93 | 7 | topopn | ⊢ ( 𝑗 ∈ Top → ∪ 𝑗 ∈ 𝑗 ) |
| 94 | 92 93 | syl | ⊢ ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) → ∪ 𝑗 ∈ 𝑗 ) |
| 95 | simpr | ⊢ ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) → 𝑥 ∈ ∪ 𝑗 ) | |
| 96 | llyi | ⊢ ( ( 𝑗 ∈ Locally 1stω ∧ ∪ 𝑗 ∈ 𝑗 ∧ 𝑥 ∈ ∪ 𝑗 ) → ∃ 𝑢 ∈ 𝑗 ( 𝑢 ⊆ ∪ 𝑗 ∧ 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) | |
| 97 | 91 94 95 96 | syl3anc | ⊢ ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) → ∃ 𝑢 ∈ 𝑗 ( 𝑢 ⊆ ∪ 𝑗 ∧ 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) |
| 98 | 90 97 | r19.29a | ⊢ ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) → ∃ 𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 99 | 98 | ralrimiva | ⊢ ( 𝑗 ∈ Locally 1stω → ∀ 𝑥 ∈ ∪ 𝑗 ∃ 𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 100 | 7 | is1stc2 | ⊢ ( 𝑗 ∈ 1stω ↔ ( 𝑗 ∈ Top ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∃ 𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 101 | 1 99 100 | sylanbrc | ⊢ ( 𝑗 ∈ Locally 1stω → 𝑗 ∈ 1stω ) |
| 102 | 101 | ssriv | ⊢ Locally 1stω ⊆ 1stω |
| 103 | 1stcrest | ⊢ ( ( 𝑗 ∈ 1stω ∧ 𝑥 ∈ 𝑗 ) → ( 𝑗 ↾t 𝑥 ) ∈ 1stω ) | |
| 104 | 103 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑗 ∈ 1stω ∧ 𝑥 ∈ 𝑗 ) ) → ( 𝑗 ↾t 𝑥 ) ∈ 1stω ) |
| 105 | 1stctop | ⊢ ( 𝑗 ∈ 1stω → 𝑗 ∈ Top ) | |
| 106 | 105 | ssriv | ⊢ 1stω ⊆ Top |
| 107 | 106 | a1i | ⊢ ( ⊤ → 1stω ⊆ Top ) |
| 108 | 104 107 | restlly | ⊢ ( ⊤ → 1stω ⊆ Locally 1stω ) |
| 109 | 108 | mptru | ⊢ 1stω ⊆ Locally 1stω |
| 110 | 102 109 | eqssi | ⊢ Locally 1stω = 1stω |