This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A property of points in a first-countable topology. (Contributed by Jeff Hankins, 22-Aug-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 1stcclb.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | 1stcclb | ⊢ ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑥 ∈ 𝒫 𝐽 ( 𝑥 ≼ ω ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑧 ∈ 𝑥 ( 𝐴 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1stcclb.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | is1stc2 | ⊢ ( 𝐽 ∈ 1stω ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑤 ∈ 𝑋 ∃ 𝑥 ∈ 𝒫 𝐽 ( 𝑥 ≼ ω ∧ ∀ 𝑦 ∈ 𝐽 ( 𝑤 ∈ 𝑦 → ∃ 𝑧 ∈ 𝑥 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) ) ) |
| 3 | 2 | simprbi | ⊢ ( 𝐽 ∈ 1stω → ∀ 𝑤 ∈ 𝑋 ∃ 𝑥 ∈ 𝒫 𝐽 ( 𝑥 ≼ ω ∧ ∀ 𝑦 ∈ 𝐽 ( 𝑤 ∈ 𝑦 → ∃ 𝑧 ∈ 𝑥 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) ) |
| 4 | eleq1 | ⊢ ( 𝑤 = 𝐴 → ( 𝑤 ∈ 𝑦 ↔ 𝐴 ∈ 𝑦 ) ) | |
| 5 | eleq1 | ⊢ ( 𝑤 = 𝐴 → ( 𝑤 ∈ 𝑧 ↔ 𝐴 ∈ 𝑧 ) ) | |
| 6 | 5 | anbi1d | ⊢ ( 𝑤 = 𝐴 → ( ( 𝑤 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ↔ ( 𝐴 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) |
| 7 | 6 | rexbidv | ⊢ ( 𝑤 = 𝐴 → ( ∃ 𝑧 ∈ 𝑥 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ↔ ∃ 𝑧 ∈ 𝑥 ( 𝐴 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) |
| 8 | 4 7 | imbi12d | ⊢ ( 𝑤 = 𝐴 → ( ( 𝑤 ∈ 𝑦 → ∃ 𝑧 ∈ 𝑥 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ↔ ( 𝐴 ∈ 𝑦 → ∃ 𝑧 ∈ 𝑥 ( 𝐴 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) ) |
| 9 | 8 | ralbidv | ⊢ ( 𝑤 = 𝐴 → ( ∀ 𝑦 ∈ 𝐽 ( 𝑤 ∈ 𝑦 → ∃ 𝑧 ∈ 𝑥 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑧 ∈ 𝑥 ( 𝐴 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) ) |
| 10 | 9 | anbi2d | ⊢ ( 𝑤 = 𝐴 → ( ( 𝑥 ≼ ω ∧ ∀ 𝑦 ∈ 𝐽 ( 𝑤 ∈ 𝑦 → ∃ 𝑧 ∈ 𝑥 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) ↔ ( 𝑥 ≼ ω ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑧 ∈ 𝑥 ( 𝐴 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) ) ) |
| 11 | 10 | rexbidv | ⊢ ( 𝑤 = 𝐴 → ( ∃ 𝑥 ∈ 𝒫 𝐽 ( 𝑥 ≼ ω ∧ ∀ 𝑦 ∈ 𝐽 ( 𝑤 ∈ 𝑦 → ∃ 𝑧 ∈ 𝑥 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) ↔ ∃ 𝑥 ∈ 𝒫 𝐽 ( 𝑥 ≼ ω ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑧 ∈ 𝑥 ( 𝐴 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) ) ) |
| 12 | 11 | rspcv | ⊢ ( 𝐴 ∈ 𝑋 → ( ∀ 𝑤 ∈ 𝑋 ∃ 𝑥 ∈ 𝒫 𝐽 ( 𝑥 ≼ ω ∧ ∀ 𝑦 ∈ 𝐽 ( 𝑤 ∈ 𝑦 → ∃ 𝑧 ∈ 𝑥 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) → ∃ 𝑥 ∈ 𝒫 𝐽 ( 𝑥 ≼ ω ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑧 ∈ 𝑥 ( 𝐴 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) ) ) |
| 13 | 3 12 | mpan9 | ⊢ ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑥 ∈ 𝒫 𝐽 ( 𝑥 ≼ ω ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑧 ∈ 𝑥 ( 𝐴 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) ) |