This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the property A passes to open subspaces, then a space which is A is also locally A . (Contributed by Mario Carneiro, 2-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | restlly.1 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗 ) ) → ( 𝑗 ↾t 𝑥 ) ∈ 𝐴 ) | |
| restlly.2 | ⊢ ( 𝜑 → 𝐴 ⊆ Top ) | ||
| Assertion | restlly | ⊢ ( 𝜑 → 𝐴 ⊆ Locally 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restlly.1 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗 ) ) → ( 𝑗 ↾t 𝑥 ) ∈ 𝐴 ) | |
| 2 | restlly.2 | ⊢ ( 𝜑 → 𝐴 ⊆ Top ) | |
| 3 | 2 | sselda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝑗 ∈ Top ) |
| 4 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ) → 𝑥 ∈ 𝑗 ) | |
| 5 | vex | ⊢ 𝑥 ∈ V | |
| 6 | 5 | pwid | ⊢ 𝑥 ∈ 𝒫 𝑥 |
| 7 | 6 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ) → 𝑥 ∈ 𝒫 𝑥 ) |
| 8 | 4 7 | elind | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ) → 𝑥 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ) |
| 9 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ) → 𝑦 ∈ 𝑥 ) | |
| 10 | 1 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑗 ) → ( 𝑗 ↾t 𝑥 ) ∈ 𝐴 ) |
| 11 | 10 | adantrr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ) → ( 𝑗 ↾t 𝑥 ) ∈ 𝐴 ) |
| 12 | elequ2 | ⊢ ( 𝑢 = 𝑥 → ( 𝑦 ∈ 𝑢 ↔ 𝑦 ∈ 𝑥 ) ) | |
| 13 | oveq2 | ⊢ ( 𝑢 = 𝑥 → ( 𝑗 ↾t 𝑢 ) = ( 𝑗 ↾t 𝑥 ) ) | |
| 14 | 13 | eleq1d | ⊢ ( 𝑢 = 𝑥 → ( ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ↔ ( 𝑗 ↾t 𝑥 ) ∈ 𝐴 ) ) |
| 15 | 12 14 | anbi12d | ⊢ ( 𝑢 = 𝑥 → ( ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ) ↔ ( 𝑦 ∈ 𝑥 ∧ ( 𝑗 ↾t 𝑥 ) ∈ 𝐴 ) ) ) |
| 16 | 15 | rspcev | ⊢ ( ( 𝑥 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ∧ ( 𝑦 ∈ 𝑥 ∧ ( 𝑗 ↾t 𝑥 ) ∈ 𝐴 ) ) → ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ) ) |
| 17 | 8 9 11 16 | syl12anc | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ) → ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ) ) |
| 18 | 17 | ralrimivva | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ) ) |
| 19 | islly | ⊢ ( 𝑗 ∈ Locally 𝐴 ↔ ( 𝑗 ∈ Top ∧ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ) ) ) | |
| 20 | 3 18 19 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝑗 ∈ Locally 𝐴 ) |
| 21 | 20 | ex | ⊢ ( 𝜑 → ( 𝑗 ∈ 𝐴 → 𝑗 ∈ Locally 𝐴 ) ) |
| 22 | 21 | ssrdv | ⊢ ( 𝜑 → 𝐴 ⊆ Locally 𝐴 ) |