This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The discrete space ~P X is locally A if and only if every singleton space has property A . (Contributed by Mario Carneiro, 20-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dislly | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝒫 𝑋 ∈ Locally 𝐴 ↔ ∀ 𝑥 ∈ 𝑋 𝒫 { 𝑥 } ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → 𝒫 𝑋 ∈ Locally 𝐴 ) | |
| 2 | simpr | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 3 | vex | ⊢ 𝑥 ∈ V | |
| 4 | 3 | snelpw | ⊢ ( 𝑥 ∈ 𝑋 ↔ { 𝑥 } ∈ 𝒫 𝑋 ) |
| 5 | 2 4 | sylib | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → { 𝑥 } ∈ 𝒫 𝑋 ) |
| 6 | vsnid | ⊢ 𝑥 ∈ { 𝑥 } | |
| 7 | 6 | a1i | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ { 𝑥 } ) |
| 8 | llyi | ⊢ ( ( 𝒫 𝑋 ∈ Locally 𝐴 ∧ { 𝑥 } ∈ 𝒫 𝑋 ∧ 𝑥 ∈ { 𝑥 } ) → ∃ 𝑦 ∈ 𝒫 𝑋 ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) ) | |
| 9 | 1 5 7 8 | syl3anc | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝒫 𝑋 ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) ) |
| 10 | simpr1 | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) ) → 𝑦 ⊆ { 𝑥 } ) | |
| 11 | simpr2 | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) ) → 𝑥 ∈ 𝑦 ) | |
| 12 | 11 | snssd | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) ) → { 𝑥 } ⊆ 𝑦 ) |
| 13 | 10 12 | eqssd | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) ) → 𝑦 = { 𝑥 } ) |
| 14 | 13 | oveq2d | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) ) → ( 𝒫 𝑋 ↾t 𝑦 ) = ( 𝒫 𝑋 ↾t { 𝑥 } ) ) |
| 15 | simplll | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) ) → 𝑋 ∈ 𝑉 ) | |
| 16 | simplr | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) ) → 𝑥 ∈ 𝑋 ) | |
| 17 | 16 | snssd | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) ) → { 𝑥 } ⊆ 𝑋 ) |
| 18 | restdis | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ { 𝑥 } ⊆ 𝑋 ) → ( 𝒫 𝑋 ↾t { 𝑥 } ) = 𝒫 { 𝑥 } ) | |
| 19 | 15 17 18 | syl2anc | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) ) → ( 𝒫 𝑋 ↾t { 𝑥 } ) = 𝒫 { 𝑥 } ) |
| 20 | 14 19 | eqtrd | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) ) → ( 𝒫 𝑋 ↾t 𝑦 ) = 𝒫 { 𝑥 } ) |
| 21 | simpr3 | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) ) → ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) | |
| 22 | 20 21 | eqeltrrd | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) ) → 𝒫 { 𝑥 } ∈ 𝐴 ) |
| 23 | 22 | ex | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) → 𝒫 { 𝑥 } ∈ 𝐴 ) ) |
| 24 | 23 | rexlimdvw | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑦 ∈ 𝒫 𝑋 ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) → 𝒫 { 𝑥 } ∈ 𝐴 ) ) |
| 25 | 9 24 | mpd | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → 𝒫 { 𝑥 } ∈ 𝐴 ) |
| 26 | 25 | ralrimiva | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) → ∀ 𝑥 ∈ 𝑋 𝒫 { 𝑥 } ∈ 𝐴 ) |
| 27 | distop | ⊢ ( 𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Top ) | |
| 28 | 27 | adantr | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑋 𝒫 { 𝑥 } ∈ 𝐴 ) → 𝒫 𝑋 ∈ Top ) |
| 29 | elpwi | ⊢ ( 𝑦 ∈ 𝒫 𝑋 → 𝑦 ⊆ 𝑋 ) | |
| 30 | 29 | adantl | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) → 𝑦 ⊆ 𝑋 ) |
| 31 | ssralv | ⊢ ( 𝑦 ⊆ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 𝒫 { 𝑥 } ∈ 𝐴 → ∀ 𝑥 ∈ 𝑦 𝒫 { 𝑥 } ∈ 𝐴 ) ) | |
| 32 | 30 31 | syl | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 𝒫 { 𝑥 } ∈ 𝐴 → ∀ 𝑥 ∈ 𝑦 𝒫 { 𝑥 } ∈ 𝐴 ) ) |
| 33 | simprl | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝒫 { 𝑥 } ∈ 𝐴 ) ) → 𝑥 ∈ 𝑦 ) | |
| 34 | 33 | snssd | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝒫 { 𝑥 } ∈ 𝐴 ) ) → { 𝑥 } ⊆ 𝑦 ) |
| 35 | 30 | adantr | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝒫 { 𝑥 } ∈ 𝐴 ) ) → 𝑦 ⊆ 𝑋 ) |
| 36 | 34 35 | sstrd | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝒫 { 𝑥 } ∈ 𝐴 ) ) → { 𝑥 } ⊆ 𝑋 ) |
| 37 | vsnex | ⊢ { 𝑥 } ∈ V | |
| 38 | 37 | elpw | ⊢ ( { 𝑥 } ∈ 𝒫 𝑋 ↔ { 𝑥 } ⊆ 𝑋 ) |
| 39 | 36 38 | sylibr | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝒫 { 𝑥 } ∈ 𝐴 ) ) → { 𝑥 } ∈ 𝒫 𝑋 ) |
| 40 | 37 | elpw | ⊢ ( { 𝑥 } ∈ 𝒫 𝑦 ↔ { 𝑥 } ⊆ 𝑦 ) |
| 41 | 34 40 | sylibr | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝒫 { 𝑥 } ∈ 𝐴 ) ) → { 𝑥 } ∈ 𝒫 𝑦 ) |
| 42 | 39 41 | elind | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝒫 { 𝑥 } ∈ 𝐴 ) ) → { 𝑥 } ∈ ( 𝒫 𝑋 ∩ 𝒫 𝑦 ) ) |
| 43 | snidg | ⊢ ( 𝑥 ∈ 𝑦 → 𝑥 ∈ { 𝑥 } ) | |
| 44 | 43 | ad2antrl | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝒫 { 𝑥 } ∈ 𝐴 ) ) → 𝑥 ∈ { 𝑥 } ) |
| 45 | simpll | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝒫 { 𝑥 } ∈ 𝐴 ) ) → 𝑋 ∈ 𝑉 ) | |
| 46 | 45 36 18 | syl2anc | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝒫 { 𝑥 } ∈ 𝐴 ) ) → ( 𝒫 𝑋 ↾t { 𝑥 } ) = 𝒫 { 𝑥 } ) |
| 47 | simprr | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝒫 { 𝑥 } ∈ 𝐴 ) ) → 𝒫 { 𝑥 } ∈ 𝐴 ) | |
| 48 | 46 47 | eqeltrd | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝒫 { 𝑥 } ∈ 𝐴 ) ) → ( 𝒫 𝑋 ↾t { 𝑥 } ) ∈ 𝐴 ) |
| 49 | eleq2 | ⊢ ( 𝑢 = { 𝑥 } → ( 𝑥 ∈ 𝑢 ↔ 𝑥 ∈ { 𝑥 } ) ) | |
| 50 | oveq2 | ⊢ ( 𝑢 = { 𝑥 } → ( 𝒫 𝑋 ↾t 𝑢 ) = ( 𝒫 𝑋 ↾t { 𝑥 } ) ) | |
| 51 | 50 | eleq1d | ⊢ ( 𝑢 = { 𝑥 } → ( ( 𝒫 𝑋 ↾t 𝑢 ) ∈ 𝐴 ↔ ( 𝒫 𝑋 ↾t { 𝑥 } ) ∈ 𝐴 ) ) |
| 52 | 49 51 | anbi12d | ⊢ ( 𝑢 = { 𝑥 } → ( ( 𝑥 ∈ 𝑢 ∧ ( 𝒫 𝑋 ↾t 𝑢 ) ∈ 𝐴 ) ↔ ( 𝑥 ∈ { 𝑥 } ∧ ( 𝒫 𝑋 ↾t { 𝑥 } ) ∈ 𝐴 ) ) ) |
| 53 | 52 | rspcev | ⊢ ( ( { 𝑥 } ∈ ( 𝒫 𝑋 ∩ 𝒫 𝑦 ) ∧ ( 𝑥 ∈ { 𝑥 } ∧ ( 𝒫 𝑋 ↾t { 𝑥 } ) ∈ 𝐴 ) ) → ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ 𝒫 𝑦 ) ( 𝑥 ∈ 𝑢 ∧ ( 𝒫 𝑋 ↾t 𝑢 ) ∈ 𝐴 ) ) |
| 54 | 42 44 48 53 | syl12anc | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝒫 { 𝑥 } ∈ 𝐴 ) ) → ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ 𝒫 𝑦 ) ( 𝑥 ∈ 𝑢 ∧ ( 𝒫 𝑋 ↾t 𝑢 ) ∈ 𝐴 ) ) |
| 55 | 54 | expr | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) ∧ 𝑥 ∈ 𝑦 ) → ( 𝒫 { 𝑥 } ∈ 𝐴 → ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ 𝒫 𝑦 ) ( 𝑥 ∈ 𝑢 ∧ ( 𝒫 𝑋 ↾t 𝑢 ) ∈ 𝐴 ) ) ) |
| 56 | 55 | ralimdva | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( ∀ 𝑥 ∈ 𝑦 𝒫 { 𝑥 } ∈ 𝐴 → ∀ 𝑥 ∈ 𝑦 ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ 𝒫 𝑦 ) ( 𝑥 ∈ 𝑢 ∧ ( 𝒫 𝑋 ↾t 𝑢 ) ∈ 𝐴 ) ) ) |
| 57 | 32 56 | syld | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 𝒫 { 𝑥 } ∈ 𝐴 → ∀ 𝑥 ∈ 𝑦 ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ 𝒫 𝑦 ) ( 𝑥 ∈ 𝑢 ∧ ( 𝒫 𝑋 ↾t 𝑢 ) ∈ 𝐴 ) ) ) |
| 58 | 57 | imp | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 𝒫 { 𝑥 } ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝑦 ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ 𝒫 𝑦 ) ( 𝑥 ∈ 𝑢 ∧ ( 𝒫 𝑋 ↾t 𝑢 ) ∈ 𝐴 ) ) |
| 59 | 58 | an32s | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑋 𝒫 { 𝑥 } ∈ 𝐴 ) ∧ 𝑦 ∈ 𝒫 𝑋 ) → ∀ 𝑥 ∈ 𝑦 ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ 𝒫 𝑦 ) ( 𝑥 ∈ 𝑢 ∧ ( 𝒫 𝑋 ↾t 𝑢 ) ∈ 𝐴 ) ) |
| 60 | 59 | ralrimiva | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑋 𝒫 { 𝑥 } ∈ 𝐴 ) → ∀ 𝑦 ∈ 𝒫 𝑋 ∀ 𝑥 ∈ 𝑦 ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ 𝒫 𝑦 ) ( 𝑥 ∈ 𝑢 ∧ ( 𝒫 𝑋 ↾t 𝑢 ) ∈ 𝐴 ) ) |
| 61 | islly | ⊢ ( 𝒫 𝑋 ∈ Locally 𝐴 ↔ ( 𝒫 𝑋 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝑋 ∀ 𝑥 ∈ 𝑦 ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ 𝒫 𝑦 ) ( 𝑥 ∈ 𝑢 ∧ ( 𝒫 𝑋 ↾t 𝑢 ) ∈ 𝐴 ) ) ) | |
| 62 | 28 60 61 | sylanbrc | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑋 𝒫 { 𝑥 } ∈ 𝐴 ) → 𝒫 𝑋 ∈ Locally 𝐴 ) |
| 63 | 26 62 | impbida | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝒫 𝑋 ∈ Locally 𝐴 ↔ ∀ 𝑥 ∈ 𝑋 𝒫 { 𝑥 } ∈ 𝐴 ) ) |