This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit operator can be expressed as a filter limit, from the filter of neighborhoods of B restricted to A \ { B } , to the topology of the complex numbers. (If B is not a limit point of A , then it is still formally a filter limit, but the neighborhood filter is not a proper filter in this case.) (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limcflf.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| limcflf.a | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | ||
| limcflf.b | ⊢ ( 𝜑 → 𝐵 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ) | ||
| limcflf.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| limcflf.c | ⊢ 𝐶 = ( 𝐴 ∖ { 𝐵 } ) | ||
| limcflf.l | ⊢ 𝐿 = ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t 𝐶 ) | ||
| Assertion | limcflf | ⊢ ( 𝜑 → ( 𝐹 limℂ 𝐵 ) = ( ( 𝐾 fLimf 𝐿 ) ‘ ( 𝐹 ↾ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcflf.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 2 | limcflf.a | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | |
| 3 | limcflf.b | ⊢ ( 𝜑 → 𝐵 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ) | |
| 4 | limcflf.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 5 | limcflf.c | ⊢ 𝐶 = ( 𝐴 ∖ { 𝐵 } ) | |
| 6 | limcflf.l | ⊢ 𝐿 = ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t 𝐶 ) | |
| 7 | vex | ⊢ 𝑡 ∈ V | |
| 8 | 7 | inex1 | ⊢ ( 𝑡 ∩ 𝐶 ) ∈ V |
| 9 | 8 | rgenw | ⊢ ∀ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝑡 ∩ 𝐶 ) ∈ V |
| 10 | eqid | ⊢ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↦ ( 𝑡 ∩ 𝐶 ) ) = ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↦ ( 𝑡 ∩ 𝐶 ) ) | |
| 11 | imaeq2 | ⊢ ( 𝑠 = ( 𝑡 ∩ 𝐶 ) → ( ( 𝐹 ↾ 𝐶 ) “ 𝑠 ) = ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑡 ∩ 𝐶 ) ) ) | |
| 12 | inss2 | ⊢ ( 𝑡 ∩ 𝐶 ) ⊆ 𝐶 | |
| 13 | resima2 | ⊢ ( ( 𝑡 ∩ 𝐶 ) ⊆ 𝐶 → ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑡 ∩ 𝐶 ) ) = ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ) | |
| 14 | 12 13 | ax-mp | ⊢ ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑡 ∩ 𝐶 ) ) = ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) |
| 15 | 11 14 | eqtrdi | ⊢ ( 𝑠 = ( 𝑡 ∩ 𝐶 ) → ( ( 𝐹 ↾ 𝐶 ) “ 𝑠 ) = ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ) |
| 16 | 15 | sseq1d | ⊢ ( 𝑠 = ( 𝑡 ∩ 𝐶 ) → ( ( ( 𝐹 ↾ 𝐶 ) “ 𝑠 ) ⊆ 𝑢 ↔ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) |
| 17 | 10 16 | rexrnmptw | ⊢ ( ∀ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝑡 ∩ 𝐶 ) ∈ V → ( ∃ 𝑠 ∈ ran ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↦ ( 𝑡 ∩ 𝐶 ) ) ( ( 𝐹 ↾ 𝐶 ) “ 𝑠 ) ⊆ 𝑢 ↔ ∃ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) |
| 18 | 9 17 | mp1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) → ( ∃ 𝑠 ∈ ran ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↦ ( 𝑡 ∩ 𝐶 ) ) ( ( 𝐹 ↾ 𝐶 ) “ 𝑠 ) ⊆ 𝑢 ↔ ∃ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) |
| 19 | fvex | ⊢ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∈ V | |
| 20 | difss | ⊢ ( 𝐴 ∖ { 𝐵 } ) ⊆ 𝐴 | |
| 21 | 5 20 | eqsstri | ⊢ 𝐶 ⊆ 𝐴 |
| 22 | 21 2 | sstrid | ⊢ ( 𝜑 → 𝐶 ⊆ ℂ ) |
| 23 | cnex | ⊢ ℂ ∈ V | |
| 24 | 23 | ssex | ⊢ ( 𝐶 ⊆ ℂ → 𝐶 ∈ V ) |
| 25 | 22 24 | syl | ⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 26 | 25 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) → 𝐶 ∈ V ) |
| 27 | restval | ⊢ ( ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∈ V ∧ 𝐶 ∈ V ) → ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t 𝐶 ) = ran ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↦ ( 𝑡 ∩ 𝐶 ) ) ) | |
| 28 | 19 26 27 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) → ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t 𝐶 ) = ran ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↦ ( 𝑡 ∩ 𝐶 ) ) ) |
| 29 | 6 28 | eqtrid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) → 𝐿 = ran ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↦ ( 𝑡 ∩ 𝐶 ) ) ) |
| 30 | 29 | rexeqdv | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) → ( ∃ 𝑠 ∈ 𝐿 ( ( 𝐹 ↾ 𝐶 ) “ 𝑠 ) ⊆ 𝑢 ↔ ∃ 𝑠 ∈ ran ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↦ ( 𝑡 ∩ 𝐶 ) ) ( ( 𝐹 ↾ 𝐶 ) “ 𝑠 ) ⊆ 𝑢 ) ) |
| 31 | 4 | cnfldtop | ⊢ 𝐾 ∈ Top |
| 32 | opnneip | ⊢ ( ( 𝐾 ∈ Top ∧ 𝑤 ∈ 𝐾 ∧ 𝐵 ∈ 𝑤 ) → 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ) | |
| 33 | 31 32 | mp3an1 | ⊢ ( ( 𝑤 ∈ 𝐾 ∧ 𝐵 ∈ 𝑤 ) → 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ) |
| 34 | id | ⊢ ( 𝑡 = 𝑤 → 𝑡 = 𝑤 ) | |
| 35 | 5 | a1i | ⊢ ( 𝑡 = 𝑤 → 𝐶 = ( 𝐴 ∖ { 𝐵 } ) ) |
| 36 | 34 35 | ineq12d | ⊢ ( 𝑡 = 𝑤 → ( 𝑡 ∩ 𝐶 ) = ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) |
| 37 | 36 | imaeq2d | ⊢ ( 𝑡 = 𝑤 → ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) = ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ) |
| 38 | 37 | sseq1d | ⊢ ( 𝑡 = 𝑤 → ( ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ↔ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) |
| 39 | 38 | rspcev | ⊢ ( ( 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) → ∃ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) |
| 40 | 33 39 | sylan | ⊢ ( ( ( 𝑤 ∈ 𝐾 ∧ 𝐵 ∈ 𝑤 ) ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) → ∃ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) |
| 41 | 40 | anasss | ⊢ ( ( 𝑤 ∈ 𝐾 ∧ ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) → ∃ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) |
| 42 | 41 | rexlimiva | ⊢ ( ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) → ∃ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) |
| 43 | simprl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ) | |
| 44 | 4 | cnfldtopon | ⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 45 | 44 | toponunii | ⊢ ℂ = ∪ 𝐾 |
| 46 | 45 | neii1 | ⊢ ( ( 𝐾 ∈ Top ∧ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ) → 𝑡 ⊆ ℂ ) |
| 47 | 31 43 46 | sylancr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → 𝑡 ⊆ ℂ ) |
| 48 | 45 | ntropn | ⊢ ( ( 𝐾 ∈ Top ∧ 𝑡 ⊆ ℂ ) → ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∈ 𝐾 ) |
| 49 | 31 47 48 | sylancr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∈ 𝐾 ) |
| 50 | 45 | lpss | ⊢ ( ( 𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ ) → ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ⊆ ℂ ) |
| 51 | 31 2 50 | sylancr | ⊢ ( 𝜑 → ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ⊆ ℂ ) |
| 52 | 51 3 | sseldd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 53 | 52 | snssd | ⊢ ( 𝜑 → { 𝐵 } ⊆ ℂ ) |
| 54 | 53 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → { 𝐵 } ⊆ ℂ ) |
| 55 | 45 | neiint | ⊢ ( ( 𝐾 ∈ Top ∧ { 𝐵 } ⊆ ℂ ∧ 𝑡 ⊆ ℂ ) → ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↔ { 𝐵 } ⊆ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ) ) |
| 56 | 31 54 47 55 | mp3an2i | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↔ { 𝐵 } ⊆ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ) ) |
| 57 | 43 56 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → { 𝐵 } ⊆ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ) |
| 58 | 52 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → 𝐵 ∈ ℂ ) |
| 59 | snssg | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ↔ { 𝐵 } ⊆ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ) ) | |
| 60 | 58 59 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → ( 𝐵 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ↔ { 𝐵 } ⊆ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ) ) |
| 61 | 57 60 | mpbird | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → 𝐵 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ) |
| 62 | 45 | ntrss2 | ⊢ ( ( 𝐾 ∈ Top ∧ 𝑡 ⊆ ℂ ) → ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ⊆ 𝑡 ) |
| 63 | 31 47 62 | sylancr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ⊆ 𝑡 ) |
| 64 | ssrin | ⊢ ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ⊆ 𝑡 → ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ⊆ ( 𝑡 ∩ 𝐶 ) ) | |
| 65 | imass2 | ⊢ ( ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ⊆ ( 𝑡 ∩ 𝐶 ) → ( 𝐹 “ ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ) ⊆ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ) | |
| 66 | 63 64 65 | 3syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → ( 𝐹 “ ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ) ⊆ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ) |
| 67 | simprr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) | |
| 68 | 66 67 | sstrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → ( 𝐹 “ ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ) ⊆ 𝑢 ) |
| 69 | eleq2 | ⊢ ( 𝑤 = ( ( int ‘ 𝐾 ) ‘ 𝑡 ) → ( 𝐵 ∈ 𝑤 ↔ 𝐵 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ) ) | |
| 70 | 5 | ineq2i | ⊢ ( 𝑤 ∩ 𝐶 ) = ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) |
| 71 | ineq1 | ⊢ ( 𝑤 = ( ( int ‘ 𝐾 ) ‘ 𝑡 ) → ( 𝑤 ∩ 𝐶 ) = ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ) | |
| 72 | 70 71 | eqtr3id | ⊢ ( 𝑤 = ( ( int ‘ 𝐾 ) ‘ 𝑡 ) → ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) = ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ) |
| 73 | 72 | imaeq2d | ⊢ ( 𝑤 = ( ( int ‘ 𝐾 ) ‘ 𝑡 ) → ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) = ( 𝐹 “ ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ) ) |
| 74 | 73 | sseq1d | ⊢ ( 𝑤 = ( ( int ‘ 𝐾 ) ‘ 𝑡 ) → ( ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ↔ ( 𝐹 “ ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ) ⊆ 𝑢 ) ) |
| 75 | 69 74 | anbi12d | ⊢ ( 𝑤 = ( ( int ‘ 𝐾 ) ‘ 𝑡 ) → ( ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ↔ ( 𝐵 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∧ ( 𝐹 “ ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ) ⊆ 𝑢 ) ) ) |
| 76 | 75 | rspcev | ⊢ ( ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∈ 𝐾 ∧ ( 𝐵 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∧ ( 𝐹 “ ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) |
| 77 | 49 61 68 76 | syl12anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) |
| 78 | 77 | rexlimdvaa | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) → ( ∃ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
| 79 | 42 78 | impbid2 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) → ( ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ↔ ∃ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) |
| 80 | 18 30 79 | 3bitr4rd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) → ( ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ↔ ∃ 𝑠 ∈ 𝐿 ( ( 𝐹 ↾ 𝐶 ) “ 𝑠 ) ⊆ 𝑢 ) ) |
| 81 | 80 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ 𝑢 ∈ 𝐾 ) ∧ 𝑥 ∈ 𝑢 ) → ( ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ↔ ∃ 𝑠 ∈ 𝐿 ( ( 𝐹 ↾ 𝐶 ) “ 𝑠 ) ⊆ 𝑢 ) ) |
| 82 | 81 | pm5.74da | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ 𝑢 ∈ 𝐾 ) → ( ( 𝑥 ∈ 𝑢 → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ↔ ( 𝑥 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( ( 𝐹 ↾ 𝐶 ) “ 𝑠 ) ⊆ 𝑢 ) ) ) |
| 83 | 82 | ralbidva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ∀ 𝑢 ∈ 𝐾 ( 𝑥 ∈ 𝑢 → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ↔ ∀ 𝑢 ∈ 𝐾 ( 𝑥 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( ( 𝐹 ↾ 𝐶 ) “ 𝑠 ) ⊆ 𝑢 ) ) ) |
| 84 | 83 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ∧ ∀ 𝑢 ∈ 𝐾 ( 𝑥 ∈ 𝑢 → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ↔ ( 𝑥 ∈ ℂ ∧ ∀ 𝑢 ∈ 𝐾 ( 𝑥 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( ( 𝐹 ↾ 𝐶 ) “ 𝑠 ) ⊆ 𝑢 ) ) ) ) |
| 85 | 1 2 52 4 | ellimc2 | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( 𝑥 ∈ ℂ ∧ ∀ 𝑢 ∈ 𝐾 ( 𝑥 ∈ 𝑢 → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) ) |
| 86 | 1 2 3 4 5 6 | limcflflem | ⊢ ( 𝜑 → 𝐿 ∈ ( Fil ‘ 𝐶 ) ) |
| 87 | fssres | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ ℂ ) | |
| 88 | 1 21 87 | sylancl | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ ℂ ) |
| 89 | isflf | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝐿 ∈ ( Fil ‘ 𝐶 ) ∧ ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ ℂ ) → ( 𝑥 ∈ ( ( 𝐾 fLimf 𝐿 ) ‘ ( 𝐹 ↾ 𝐶 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ∀ 𝑢 ∈ 𝐾 ( 𝑥 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( ( 𝐹 ↾ 𝐶 ) “ 𝑠 ) ⊆ 𝑢 ) ) ) ) | |
| 90 | 44 86 88 89 | mp3an2i | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐾 fLimf 𝐿 ) ‘ ( 𝐹 ↾ 𝐶 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ∀ 𝑢 ∈ 𝐾 ( 𝑥 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( ( 𝐹 ↾ 𝐶 ) “ 𝑠 ) ⊆ 𝑢 ) ) ) ) |
| 91 | 84 85 90 | 3bitr4d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ 𝑥 ∈ ( ( 𝐾 fLimf 𝐿 ) ‘ ( 𝐹 ↾ 𝐶 ) ) ) ) |
| 92 | 91 | eqrdv | ⊢ ( 𝜑 → ( 𝐹 limℂ 𝐵 ) = ( ( 𝐾 fLimf 𝐿 ) ‘ ( 𝐹 ↾ 𝐶 ) ) ) |