This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for limcflf . (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limcflf.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| limcflf.a | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | ||
| limcflf.b | ⊢ ( 𝜑 → 𝐵 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ) | ||
| limcflf.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| limcflf.c | ⊢ 𝐶 = ( 𝐴 ∖ { 𝐵 } ) | ||
| limcflf.l | ⊢ 𝐿 = ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t 𝐶 ) | ||
| Assertion | limcflflem | ⊢ ( 𝜑 → 𝐿 ∈ ( Fil ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcflf.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 2 | limcflf.a | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | |
| 3 | limcflf.b | ⊢ ( 𝜑 → 𝐵 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ) | |
| 4 | limcflf.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 5 | limcflf.c | ⊢ 𝐶 = ( 𝐴 ∖ { 𝐵 } ) | |
| 6 | limcflf.l | ⊢ 𝐿 = ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t 𝐶 ) | |
| 7 | 4 | cnfldtop | ⊢ 𝐾 ∈ Top |
| 8 | 4 | cnfldtopon | ⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 9 | 8 | toponunii | ⊢ ℂ = ∪ 𝐾 |
| 10 | 9 | islp | ⊢ ( ( 𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ ) → ( 𝐵 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ↔ 𝐵 ∈ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ) |
| 11 | 7 2 10 | sylancr | ⊢ ( 𝜑 → ( 𝐵 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ↔ 𝐵 ∈ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ) |
| 12 | 3 11 | mpbid | ⊢ ( 𝜑 → 𝐵 ∈ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) |
| 13 | 5 | fveq2i | ⊢ ( ( cls ‘ 𝐾 ) ‘ 𝐶 ) = ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) |
| 14 | 12 13 | eleqtrrdi | ⊢ ( 𝜑 → 𝐵 ∈ ( ( cls ‘ 𝐾 ) ‘ 𝐶 ) ) |
| 15 | difss | ⊢ ( 𝐴 ∖ { 𝐵 } ) ⊆ 𝐴 | |
| 16 | 5 15 | eqsstri | ⊢ 𝐶 ⊆ 𝐴 |
| 17 | 16 2 | sstrid | ⊢ ( 𝜑 → 𝐶 ⊆ ℂ ) |
| 18 | 9 | lpss | ⊢ ( ( 𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ ) → ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ⊆ ℂ ) |
| 19 | 7 2 18 | sylancr | ⊢ ( 𝜑 → ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ⊆ ℂ ) |
| 20 | 19 3 | sseldd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 21 | trnei | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝐶 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ∈ ( ( cls ‘ 𝐾 ) ‘ 𝐶 ) ↔ ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t 𝐶 ) ∈ ( Fil ‘ 𝐶 ) ) ) | |
| 22 | 8 17 20 21 | mp3an2i | ⊢ ( 𝜑 → ( 𝐵 ∈ ( ( cls ‘ 𝐾 ) ‘ 𝐶 ) ↔ ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t 𝐶 ) ∈ ( Fil ‘ 𝐶 ) ) ) |
| 23 | 14 22 | mpbid | ⊢ ( 𝜑 → ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t 𝐶 ) ∈ ( Fil ‘ 𝐶 ) ) |
| 24 | 6 23 | eqeltrid | ⊢ ( 𝜑 → 𝐿 ∈ ( Fil ‘ 𝐶 ) ) |