This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit operator can be expressed as a filter limit, from the filter of neighborhoods of B restricted to A \ { B } , to the topology of the complex numbers. (If B is not a limit point of A , then it is still formally a filter limit, but the neighborhood filter is not a proper filter in this case.) (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limcflf.f | |- ( ph -> F : A --> CC ) |
|
| limcflf.a | |- ( ph -> A C_ CC ) |
||
| limcflf.b | |- ( ph -> B e. ( ( limPt ` K ) ` A ) ) |
||
| limcflf.k | |- K = ( TopOpen ` CCfld ) |
||
| limcflf.c | |- C = ( A \ { B } ) |
||
| limcflf.l | |- L = ( ( ( nei ` K ) ` { B } ) |`t C ) |
||
| Assertion | limcflf | |- ( ph -> ( F limCC B ) = ( ( K fLimf L ) ` ( F |` C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcflf.f | |- ( ph -> F : A --> CC ) |
|
| 2 | limcflf.a | |- ( ph -> A C_ CC ) |
|
| 3 | limcflf.b | |- ( ph -> B e. ( ( limPt ` K ) ` A ) ) |
|
| 4 | limcflf.k | |- K = ( TopOpen ` CCfld ) |
|
| 5 | limcflf.c | |- C = ( A \ { B } ) |
|
| 6 | limcflf.l | |- L = ( ( ( nei ` K ) ` { B } ) |`t C ) |
|
| 7 | vex | |- t e. _V |
|
| 8 | 7 | inex1 | |- ( t i^i C ) e. _V |
| 9 | 8 | rgenw | |- A. t e. ( ( nei ` K ) ` { B } ) ( t i^i C ) e. _V |
| 10 | eqid | |- ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) = ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) |
|
| 11 | imaeq2 | |- ( s = ( t i^i C ) -> ( ( F |` C ) " s ) = ( ( F |` C ) " ( t i^i C ) ) ) |
|
| 12 | inss2 | |- ( t i^i C ) C_ C |
|
| 13 | resima2 | |- ( ( t i^i C ) C_ C -> ( ( F |` C ) " ( t i^i C ) ) = ( F " ( t i^i C ) ) ) |
|
| 14 | 12 13 | ax-mp | |- ( ( F |` C ) " ( t i^i C ) ) = ( F " ( t i^i C ) ) |
| 15 | 11 14 | eqtrdi | |- ( s = ( t i^i C ) -> ( ( F |` C ) " s ) = ( F " ( t i^i C ) ) ) |
| 16 | 15 | sseq1d | |- ( s = ( t i^i C ) -> ( ( ( F |` C ) " s ) C_ u <-> ( F " ( t i^i C ) ) C_ u ) ) |
| 17 | 10 16 | rexrnmptw | |- ( A. t e. ( ( nei ` K ) ` { B } ) ( t i^i C ) e. _V -> ( E. s e. ran ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) ( ( F |` C ) " s ) C_ u <-> E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u ) ) |
| 18 | 9 17 | mp1i | |- ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> ( E. s e. ran ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) ( ( F |` C ) " s ) C_ u <-> E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u ) ) |
| 19 | fvex | |- ( ( nei ` K ) ` { B } ) e. _V |
|
| 20 | difss | |- ( A \ { B } ) C_ A |
|
| 21 | 5 20 | eqsstri | |- C C_ A |
| 22 | 21 2 | sstrid | |- ( ph -> C C_ CC ) |
| 23 | cnex | |- CC e. _V |
|
| 24 | 23 | ssex | |- ( C C_ CC -> C e. _V ) |
| 25 | 22 24 | syl | |- ( ph -> C e. _V ) |
| 26 | 25 | ad2antrr | |- ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> C e. _V ) |
| 27 | restval | |- ( ( ( ( nei ` K ) ` { B } ) e. _V /\ C e. _V ) -> ( ( ( nei ` K ) ` { B } ) |`t C ) = ran ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) ) |
|
| 28 | 19 26 27 | sylancr | |- ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> ( ( ( nei ` K ) ` { B } ) |`t C ) = ran ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) ) |
| 29 | 6 28 | eqtrid | |- ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> L = ran ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) ) |
| 30 | 29 | rexeqdv | |- ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> ( E. s e. L ( ( F |` C ) " s ) C_ u <-> E. s e. ran ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) ( ( F |` C ) " s ) C_ u ) ) |
| 31 | 4 | cnfldtop | |- K e. Top |
| 32 | opnneip | |- ( ( K e. Top /\ w e. K /\ B e. w ) -> w e. ( ( nei ` K ) ` { B } ) ) |
|
| 33 | 31 32 | mp3an1 | |- ( ( w e. K /\ B e. w ) -> w e. ( ( nei ` K ) ` { B } ) ) |
| 34 | id | |- ( t = w -> t = w ) |
|
| 35 | 5 | a1i | |- ( t = w -> C = ( A \ { B } ) ) |
| 36 | 34 35 | ineq12d | |- ( t = w -> ( t i^i C ) = ( w i^i ( A \ { B } ) ) ) |
| 37 | 36 | imaeq2d | |- ( t = w -> ( F " ( t i^i C ) ) = ( F " ( w i^i ( A \ { B } ) ) ) ) |
| 38 | 37 | sseq1d | |- ( t = w -> ( ( F " ( t i^i C ) ) C_ u <-> ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) |
| 39 | 38 | rspcev | |- ( ( w e. ( ( nei ` K ) ` { B } ) /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) -> E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u ) |
| 40 | 33 39 | sylan | |- ( ( ( w e. K /\ B e. w ) /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) -> E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u ) |
| 41 | 40 | anasss | |- ( ( w e. K /\ ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) -> E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u ) |
| 42 | 41 | rexlimiva | |- ( E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) -> E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u ) |
| 43 | simprl | |- ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> t e. ( ( nei ` K ) ` { B } ) ) |
|
| 44 | 4 | cnfldtopon | |- K e. ( TopOn ` CC ) |
| 45 | 44 | toponunii | |- CC = U. K |
| 46 | 45 | neii1 | |- ( ( K e. Top /\ t e. ( ( nei ` K ) ` { B } ) ) -> t C_ CC ) |
| 47 | 31 43 46 | sylancr | |- ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> t C_ CC ) |
| 48 | 45 | ntropn | |- ( ( K e. Top /\ t C_ CC ) -> ( ( int ` K ) ` t ) e. K ) |
| 49 | 31 47 48 | sylancr | |- ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> ( ( int ` K ) ` t ) e. K ) |
| 50 | 45 | lpss | |- ( ( K e. Top /\ A C_ CC ) -> ( ( limPt ` K ) ` A ) C_ CC ) |
| 51 | 31 2 50 | sylancr | |- ( ph -> ( ( limPt ` K ) ` A ) C_ CC ) |
| 52 | 51 3 | sseldd | |- ( ph -> B e. CC ) |
| 53 | 52 | snssd | |- ( ph -> { B } C_ CC ) |
| 54 | 53 | ad3antrrr | |- ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> { B } C_ CC ) |
| 55 | 45 | neiint | |- ( ( K e. Top /\ { B } C_ CC /\ t C_ CC ) -> ( t e. ( ( nei ` K ) ` { B } ) <-> { B } C_ ( ( int ` K ) ` t ) ) ) |
| 56 | 31 54 47 55 | mp3an2i | |- ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> ( t e. ( ( nei ` K ) ` { B } ) <-> { B } C_ ( ( int ` K ) ` t ) ) ) |
| 57 | 43 56 | mpbid | |- ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> { B } C_ ( ( int ` K ) ` t ) ) |
| 58 | 52 | ad3antrrr | |- ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> B e. CC ) |
| 59 | snssg | |- ( B e. CC -> ( B e. ( ( int ` K ) ` t ) <-> { B } C_ ( ( int ` K ) ` t ) ) ) |
|
| 60 | 58 59 | syl | |- ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> ( B e. ( ( int ` K ) ` t ) <-> { B } C_ ( ( int ` K ) ` t ) ) ) |
| 61 | 57 60 | mpbird | |- ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> B e. ( ( int ` K ) ` t ) ) |
| 62 | 45 | ntrss2 | |- ( ( K e. Top /\ t C_ CC ) -> ( ( int ` K ) ` t ) C_ t ) |
| 63 | 31 47 62 | sylancr | |- ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> ( ( int ` K ) ` t ) C_ t ) |
| 64 | ssrin | |- ( ( ( int ` K ) ` t ) C_ t -> ( ( ( int ` K ) ` t ) i^i C ) C_ ( t i^i C ) ) |
|
| 65 | imass2 | |- ( ( ( ( int ` K ) ` t ) i^i C ) C_ ( t i^i C ) -> ( F " ( ( ( int ` K ) ` t ) i^i C ) ) C_ ( F " ( t i^i C ) ) ) |
|
| 66 | 63 64 65 | 3syl | |- ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> ( F " ( ( ( int ` K ) ` t ) i^i C ) ) C_ ( F " ( t i^i C ) ) ) |
| 67 | simprr | |- ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> ( F " ( t i^i C ) ) C_ u ) |
|
| 68 | 66 67 | sstrd | |- ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> ( F " ( ( ( int ` K ) ` t ) i^i C ) ) C_ u ) |
| 69 | eleq2 | |- ( w = ( ( int ` K ) ` t ) -> ( B e. w <-> B e. ( ( int ` K ) ` t ) ) ) |
|
| 70 | 5 | ineq2i | |- ( w i^i C ) = ( w i^i ( A \ { B } ) ) |
| 71 | ineq1 | |- ( w = ( ( int ` K ) ` t ) -> ( w i^i C ) = ( ( ( int ` K ) ` t ) i^i C ) ) |
|
| 72 | 70 71 | eqtr3id | |- ( w = ( ( int ` K ) ` t ) -> ( w i^i ( A \ { B } ) ) = ( ( ( int ` K ) ` t ) i^i C ) ) |
| 73 | 72 | imaeq2d | |- ( w = ( ( int ` K ) ` t ) -> ( F " ( w i^i ( A \ { B } ) ) ) = ( F " ( ( ( int ` K ) ` t ) i^i C ) ) ) |
| 74 | 73 | sseq1d | |- ( w = ( ( int ` K ) ` t ) -> ( ( F " ( w i^i ( A \ { B } ) ) ) C_ u <-> ( F " ( ( ( int ` K ) ` t ) i^i C ) ) C_ u ) ) |
| 75 | 69 74 | anbi12d | |- ( w = ( ( int ` K ) ` t ) -> ( ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) <-> ( B e. ( ( int ` K ) ` t ) /\ ( F " ( ( ( int ` K ) ` t ) i^i C ) ) C_ u ) ) ) |
| 76 | 75 | rspcev | |- ( ( ( ( int ` K ) ` t ) e. K /\ ( B e. ( ( int ` K ) ` t ) /\ ( F " ( ( ( int ` K ) ` t ) i^i C ) ) C_ u ) ) -> E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) |
| 77 | 49 61 68 76 | syl12anc | |- ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) |
| 78 | 77 | rexlimdvaa | |- ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> ( E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u -> E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) ) |
| 79 | 42 78 | impbid2 | |- ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> ( E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) <-> E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u ) ) |
| 80 | 18 30 79 | 3bitr4rd | |- ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> ( E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) <-> E. s e. L ( ( F |` C ) " s ) C_ u ) ) |
| 81 | 80 | anassrs | |- ( ( ( ( ph /\ x e. CC ) /\ u e. K ) /\ x e. u ) -> ( E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) <-> E. s e. L ( ( F |` C ) " s ) C_ u ) ) |
| 82 | 81 | pm5.74da | |- ( ( ( ph /\ x e. CC ) /\ u e. K ) -> ( ( x e. u -> E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) <-> ( x e. u -> E. s e. L ( ( F |` C ) " s ) C_ u ) ) ) |
| 83 | 82 | ralbidva | |- ( ( ph /\ x e. CC ) -> ( A. u e. K ( x e. u -> E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) <-> A. u e. K ( x e. u -> E. s e. L ( ( F |` C ) " s ) C_ u ) ) ) |
| 84 | 83 | pm5.32da | |- ( ph -> ( ( x e. CC /\ A. u e. K ( x e. u -> E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) ) <-> ( x e. CC /\ A. u e. K ( x e. u -> E. s e. L ( ( F |` C ) " s ) C_ u ) ) ) ) |
| 85 | 1 2 52 4 | ellimc2 | |- ( ph -> ( x e. ( F limCC B ) <-> ( x e. CC /\ A. u e. K ( x e. u -> E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) ) ) ) |
| 86 | 1 2 3 4 5 6 | limcflflem | |- ( ph -> L e. ( Fil ` C ) ) |
| 87 | fssres | |- ( ( F : A --> CC /\ C C_ A ) -> ( F |` C ) : C --> CC ) |
|
| 88 | 1 21 87 | sylancl | |- ( ph -> ( F |` C ) : C --> CC ) |
| 89 | isflf | |- ( ( K e. ( TopOn ` CC ) /\ L e. ( Fil ` C ) /\ ( F |` C ) : C --> CC ) -> ( x e. ( ( K fLimf L ) ` ( F |` C ) ) <-> ( x e. CC /\ A. u e. K ( x e. u -> E. s e. L ( ( F |` C ) " s ) C_ u ) ) ) ) |
|
| 90 | 44 86 88 89 | mp3an2i | |- ( ph -> ( x e. ( ( K fLimf L ) ` ( F |` C ) ) <-> ( x e. CC /\ A. u e. K ( x e. u -> E. s e. L ( ( F |` C ) " s ) C_ u ) ) ) ) |
| 91 | 84 85 90 | 3bitr4d | |- ( ph -> ( x e. ( F limCC B ) <-> x e. ( ( K fLimf L ) ` ( F |` C ) ) ) ) |
| 92 | 91 | eqrdv | |- ( ph -> ( F limCC B ) = ( ( K fLimf L ) ` ( F |` C ) ) ) |