This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The compact generator generates a finer topology than the original. (Contributed by Mario Carneiro, 20-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kgenss | ⊢ ( 𝐽 ∈ Top → 𝐽 ⊆ ( 𝑘Gen ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni | ⊢ ( 𝑥 ∈ 𝐽 → 𝑥 ⊆ ∪ 𝐽 ) | |
| 2 | 1 | a1i | ⊢ ( 𝐽 ∈ Top → ( 𝑥 ∈ 𝐽 → 𝑥 ⊆ ∪ 𝐽 ) ) |
| 3 | elrestr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑘 ∈ 𝒫 ∪ 𝐽 ∧ 𝑥 ∈ 𝐽 ) → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) | |
| 4 | 3 | 3expa | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑘 ∈ 𝒫 ∪ 𝐽 ) ∧ 𝑥 ∈ 𝐽 ) → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) |
| 5 | 4 | an32s | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑘 ∈ 𝒫 ∪ 𝐽 ) → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) |
| 6 | 5 | a1d | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑘 ∈ 𝒫 ∪ 𝐽 ) → ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ) |
| 7 | 6 | ralrimiva | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) → ∀ 𝑘 ∈ 𝒫 ∪ 𝐽 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ) |
| 8 | 7 | ex | ⊢ ( 𝐽 ∈ Top → ( 𝑥 ∈ 𝐽 → ∀ 𝑘 ∈ 𝒫 ∪ 𝐽 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ) ) |
| 9 | 2 8 | jcad | ⊢ ( 𝐽 ∈ Top → ( 𝑥 ∈ 𝐽 → ( 𝑥 ⊆ ∪ 𝐽 ∧ ∀ 𝑘 ∈ 𝒫 ∪ 𝐽 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ) ) ) |
| 10 | toptopon2 | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
| 11 | elkgen | ⊢ ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) → ( 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ↔ ( 𝑥 ⊆ ∪ 𝐽 ∧ ∀ 𝑘 ∈ 𝒫 ∪ 𝐽 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ) ) ) | |
| 12 | 10 11 | sylbi | ⊢ ( 𝐽 ∈ Top → ( 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ↔ ( 𝑥 ⊆ ∪ 𝐽 ∧ ∀ 𝑘 ∈ 𝒫 ∪ 𝐽 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ) ) ) |
| 13 | 9 12 | sylibrd | ⊢ ( 𝐽 ∈ Top → ( 𝑥 ∈ 𝐽 → 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ) |
| 14 | 13 | ssrdv | ⊢ ( 𝐽 ∈ Top → 𝐽 ⊆ ( 𝑘Gen ‘ 𝐽 ) ) |