This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous function is also continuous with the domain and codomain replaced by their compact generator topologies. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kgen2cn | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 ∈ ( ( 𝑘Gen ‘ 𝐽 ) Cn ( 𝑘Gen ‘ 𝐾 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntop1 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) | |
| 2 | toptopon2 | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 4 | kgentopon | ⊢ ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) → ( 𝑘Gen ‘ 𝐽 ) ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( 𝑘Gen ‘ 𝐽 ) ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 6 | kgenss | ⊢ ( 𝐽 ∈ Top → 𝐽 ⊆ ( 𝑘Gen ‘ 𝐽 ) ) | |
| 7 | 1 6 | syl | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ⊆ ( 𝑘Gen ‘ 𝐽 ) ) |
| 8 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 9 | 8 | cnss1 | ⊢ ( ( ( 𝑘Gen ‘ 𝐽 ) ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐽 ⊆ ( 𝑘Gen ‘ 𝐽 ) ) → ( 𝐽 Cn 𝐾 ) ⊆ ( ( 𝑘Gen ‘ 𝐽 ) Cn 𝐾 ) ) |
| 10 | 5 7 9 | syl2anc | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( 𝐽 Cn 𝐾 ) ⊆ ( ( 𝑘Gen ‘ 𝐽 ) Cn 𝐾 ) ) |
| 11 | kgenf | ⊢ 𝑘Gen : Top ⟶ Top | |
| 12 | ffn | ⊢ ( 𝑘Gen : Top ⟶ Top → 𝑘Gen Fn Top ) | |
| 13 | 11 12 | ax-mp | ⊢ 𝑘Gen Fn Top |
| 14 | fnfvelrn | ⊢ ( ( 𝑘Gen Fn Top ∧ 𝐽 ∈ Top ) → ( 𝑘Gen ‘ 𝐽 ) ∈ ran 𝑘Gen ) | |
| 15 | 13 1 14 | sylancr | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( 𝑘Gen ‘ 𝐽 ) ∈ ran 𝑘Gen ) |
| 16 | cntop2 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) | |
| 17 | kgencn3 | ⊢ ( ( ( 𝑘Gen ‘ 𝐽 ) ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) → ( ( 𝑘Gen ‘ 𝐽 ) Cn 𝐾 ) = ( ( 𝑘Gen ‘ 𝐽 ) Cn ( 𝑘Gen ‘ 𝐾 ) ) ) | |
| 18 | 15 16 17 | syl2anc | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( ( 𝑘Gen ‘ 𝐽 ) Cn 𝐾 ) = ( ( 𝑘Gen ‘ 𝐽 ) Cn ( 𝑘Gen ‘ 𝐾 ) ) ) |
| 19 | 10 18 | sseqtrd | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( 𝐽 Cn 𝐾 ) ⊆ ( ( 𝑘Gen ‘ 𝐽 ) Cn ( 𝑘Gen ‘ 𝐾 ) ) ) |
| 20 | id | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 21 | 19 20 | sseldd | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 ∈ ( ( 𝑘Gen ‘ 𝐽 ) Cn ( 𝑘Gen ‘ 𝐾 ) ) ) |