This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound for intersection with a domain. Theorem 40 of Suppes p. 66, who calls it "somewhat surprising". (Contributed by NM, 11-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dminss | ⊢ ( dom 𝑅 ∩ 𝐴 ) ⊆ ( ◡ 𝑅 “ ( 𝑅 “ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑦 ) → ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑦 ) ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑦 ) ) |
| 3 | vex | ⊢ 𝑦 ∈ V | |
| 4 | 3 | elima2 | ⊢ ( 𝑦 ∈ ( 𝑅 “ 𝐴 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑦 ) ) |
| 5 | 2 4 | sylibr | ⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ ( 𝑅 “ 𝐴 ) ) |
| 6 | simpl | ⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 𝑅 𝑦 ) | |
| 7 | vex | ⊢ 𝑥 ∈ V | |
| 8 | 3 7 | brcnv | ⊢ ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) |
| 9 | 6 8 | sylibr | ⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ◡ 𝑅 𝑥 ) |
| 10 | 5 9 | jca | ⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝑅 “ 𝐴 ) ∧ 𝑦 ◡ 𝑅 𝑥 ) ) |
| 11 | 10 | eximi | ⊢ ( ∃ 𝑦 ( 𝑥 𝑅 𝑦 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ( 𝑦 ∈ ( 𝑅 “ 𝐴 ) ∧ 𝑦 ◡ 𝑅 𝑥 ) ) |
| 12 | 7 | eldm | ⊢ ( 𝑥 ∈ dom 𝑅 ↔ ∃ 𝑦 𝑥 𝑅 𝑦 ) |
| 13 | 12 | anbi1i | ⊢ ( ( 𝑥 ∈ dom 𝑅 ∧ 𝑥 ∈ 𝐴 ) ↔ ( ∃ 𝑦 𝑥 𝑅 𝑦 ∧ 𝑥 ∈ 𝐴 ) ) |
| 14 | elin | ⊢ ( 𝑥 ∈ ( dom 𝑅 ∩ 𝐴 ) ↔ ( 𝑥 ∈ dom 𝑅 ∧ 𝑥 ∈ 𝐴 ) ) | |
| 15 | 19.41v | ⊢ ( ∃ 𝑦 ( 𝑥 𝑅 𝑦 ∧ 𝑥 ∈ 𝐴 ) ↔ ( ∃ 𝑦 𝑥 𝑅 𝑦 ∧ 𝑥 ∈ 𝐴 ) ) | |
| 16 | 13 14 15 | 3bitr4i | ⊢ ( 𝑥 ∈ ( dom 𝑅 ∩ 𝐴 ) ↔ ∃ 𝑦 ( 𝑥 𝑅 𝑦 ∧ 𝑥 ∈ 𝐴 ) ) |
| 17 | 7 | elima2 | ⊢ ( 𝑥 ∈ ( ◡ 𝑅 “ ( 𝑅 “ 𝐴 ) ) ↔ ∃ 𝑦 ( 𝑦 ∈ ( 𝑅 “ 𝐴 ) ∧ 𝑦 ◡ 𝑅 𝑥 ) ) |
| 18 | 11 16 17 | 3imtr4i | ⊢ ( 𝑥 ∈ ( dom 𝑅 ∩ 𝐴 ) → 𝑥 ∈ ( ◡ 𝑅 “ ( 𝑅 “ 𝐴 ) ) ) |
| 19 | 18 | ssriv | ⊢ ( dom 𝑅 ∩ 𝐴 ) ⊆ ( ◡ 𝑅 “ ( 𝑅 “ 𝐴 ) ) |