This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change bound variable in a directed integral. (Contributed by Mario Carneiro, 7-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvditg.1 | ⊢ ( 𝑥 = 𝑦 → 𝐶 = 𝐷 ) | |
| cbvditg.2 | ⊢ Ⅎ 𝑦 𝐶 | ||
| cbvditg.3 | ⊢ Ⅎ 𝑥 𝐷 | ||
| Assertion | cbvditg | ⊢ ⨜ [ 𝐴 → 𝐵 ] 𝐶 d 𝑥 = ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvditg.1 | ⊢ ( 𝑥 = 𝑦 → 𝐶 = 𝐷 ) | |
| 2 | cbvditg.2 | ⊢ Ⅎ 𝑦 𝐶 | |
| 3 | cbvditg.3 | ⊢ Ⅎ 𝑥 𝐷 | |
| 4 | biid | ⊢ ( 𝐴 ≤ 𝐵 ↔ 𝐴 ≤ 𝐵 ) | |
| 5 | 1 2 3 | cbvitg | ⊢ ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) 𝐷 d 𝑦 |
| 6 | 1 2 3 | cbvitg | ⊢ ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 = ∫ ( 𝐵 (,) 𝐴 ) 𝐷 d 𝑦 |
| 7 | 6 | negeqi | ⊢ - ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 = - ∫ ( 𝐵 (,) 𝐴 ) 𝐷 d 𝑦 |
| 8 | 4 5 7 | ifbieq12i | ⊢ if ( 𝐴 ≤ 𝐵 , ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 , - ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 ) = if ( 𝐴 ≤ 𝐵 , ∫ ( 𝐴 (,) 𝐵 ) 𝐷 d 𝑦 , - ∫ ( 𝐵 (,) 𝐴 ) 𝐷 d 𝑦 ) |
| 9 | df-ditg | ⊢ ⨜ [ 𝐴 → 𝐵 ] 𝐶 d 𝑥 = if ( 𝐴 ≤ 𝐵 , ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 , - ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 ) | |
| 10 | df-ditg | ⊢ ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑦 = if ( 𝐴 ≤ 𝐵 , ∫ ( 𝐴 (,) 𝐵 ) 𝐷 d 𝑦 , - ∫ ( 𝐵 (,) 𝐴 ) 𝐷 d 𝑦 ) | |
| 11 | 8 9 10 | 3eqtr4i | ⊢ ⨜ [ 𝐴 → 𝐵 ] 𝐶 d 𝑥 = ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑦 |