This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for the directed integral. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ditgeq3d.1 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| ditgeq3d.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐷 = 𝐸 ) | ||
| Assertion | ditgeq3d | ⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 = ⨜ [ 𝐴 → 𝐵 ] 𝐸 d 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ditgeq3d.1 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 2 | ditgeq3d.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐷 = 𝐸 ) | |
| 3 | df-ditg | ⊢ ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 = if ( 𝐴 ≤ 𝐵 , ∫ ( 𝐴 (,) 𝐵 ) 𝐷 d 𝑥 , - ∫ ( 𝐵 (,) 𝐴 ) 𝐷 d 𝑥 ) | |
| 4 | 1 | iftrued | ⊢ ( 𝜑 → if ( 𝐴 ≤ 𝐵 , ∫ ( 𝐴 (,) 𝐵 ) 𝐷 d 𝑥 , - ∫ ( 𝐵 (,) 𝐴 ) 𝐷 d 𝑥 ) = ∫ ( 𝐴 (,) 𝐵 ) 𝐷 d 𝑥 ) |
| 5 | 3 4 | eqtrid | ⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) 𝐷 d 𝑥 ) |
| 6 | 2 | itgeq2dv | ⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) 𝐷 d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) 𝐸 d 𝑥 ) |
| 7 | df-ditg | ⊢ ⨜ [ 𝐴 → 𝐵 ] 𝐸 d 𝑥 = if ( 𝐴 ≤ 𝐵 , ∫ ( 𝐴 (,) 𝐵 ) 𝐸 d 𝑥 , - ∫ ( 𝐵 (,) 𝐴 ) 𝐸 d 𝑥 ) | |
| 8 | 1 | iftrued | ⊢ ( 𝜑 → if ( 𝐴 ≤ 𝐵 , ∫ ( 𝐴 (,) 𝐵 ) 𝐸 d 𝑥 , - ∫ ( 𝐵 (,) 𝐴 ) 𝐸 d 𝑥 ) = ∫ ( 𝐴 (,) 𝐵 ) 𝐸 d 𝑥 ) |
| 9 | 7 8 | eqtr2id | ⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) 𝐸 d 𝑥 = ⨜ [ 𝐴 → 𝐵 ] 𝐸 d 𝑥 ) |
| 10 | 5 6 9 | 3eqtrd | ⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 = ⨜ [ 𝐴 → 𝐵 ] 𝐸 d 𝑥 ) |