This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integration by u-substitution. The main difference with respect to itgsubst is that here we consider the range of A ( x ) to be in the closed interval ( K , L ) . If A ( x ) is a continuous, differentiable function from [ X , Y ] to ( Z , W ) , whose derivative is continuous and integrable, and C ( u ) is a continuous function on ( Z , W ) , then the integral of C ( u ) from K = A ( X ) to L = A ( Y ) is equal to the integral of C ( A ( x ) ) _D A ( x ) from X to Y . (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgsubsticc.1 | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) | |
| itgsubsticc.2 | ⊢ ( 𝜑 → 𝑌 ∈ ℝ ) | ||
| itgsubsticc.3 | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | ||
| itgsubsticc.4 | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝐾 [,] 𝐿 ) ) ) | ||
| itgsubsticc.5 | ⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 ) ∈ ( ( 𝐾 [,] 𝐿 ) –cn→ ℂ ) ) | ||
| itgsubsticc.6 | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ ( ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ∩ 𝐿1 ) ) | ||
| itgsubsticc.7 | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ) | ||
| itgsubsticc.8 | ⊢ ( 𝑢 = 𝐴 → 𝐶 = 𝐸 ) | ||
| itgsubsticc.9 | ⊢ ( 𝑥 = 𝑋 → 𝐴 = 𝐾 ) | ||
| itgsubsticc.10 | ⊢ ( 𝑥 = 𝑌 → 𝐴 = 𝐿 ) | ||
| itgsubsticc.11 | ⊢ ( 𝜑 → 𝐾 ∈ ℝ ) | ||
| itgsubsticc.12 | ⊢ ( 𝜑 → 𝐿 ∈ ℝ ) | ||
| Assertion | itgsubsticc | ⊢ ( 𝜑 → ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋 → 𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgsubsticc.1 | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) | |
| 2 | itgsubsticc.2 | ⊢ ( 𝜑 → 𝑌 ∈ ℝ ) | |
| 3 | itgsubsticc.3 | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | |
| 4 | itgsubsticc.4 | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝐾 [,] 𝐿 ) ) ) | |
| 5 | itgsubsticc.5 | ⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 ) ∈ ( ( 𝐾 [,] 𝐿 ) –cn→ ℂ ) ) | |
| 6 | itgsubsticc.6 | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ ( ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ∩ 𝐿1 ) ) | |
| 7 | itgsubsticc.7 | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ) | |
| 8 | itgsubsticc.8 | ⊢ ( 𝑢 = 𝐴 → 𝐶 = 𝐸 ) | |
| 9 | itgsubsticc.9 | ⊢ ( 𝑥 = 𝑋 → 𝐴 = 𝐾 ) | |
| 10 | itgsubsticc.10 | ⊢ ( 𝑥 = 𝑌 → 𝐴 = 𝐿 ) | |
| 11 | itgsubsticc.11 | ⊢ ( 𝜑 → 𝐾 ∈ ℝ ) | |
| 12 | itgsubsticc.12 | ⊢ ( 𝜑 → 𝐿 ∈ ℝ ) | |
| 13 | eqid | ⊢ ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 ) = ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 ) | |
| 14 | eqid | ⊢ ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 ) ‘ 𝑢 ) , if ( 𝑢 < 𝐾 , ( ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 ) ‘ 𝐾 ) , ( ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 ) ‘ 𝐿 ) ) ) ) = ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 ) ‘ 𝑢 ) , if ( 𝑢 < 𝐾 , ( ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 ) ‘ 𝐾 ) , ( ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 ) ‘ 𝐿 ) ) ) ) | |
| 15 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) = ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) | |
| 16 | 10 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → 𝐴 = 𝐿 ) |
| 17 | 1 | rexrd | ⊢ ( 𝜑 → 𝑋 ∈ ℝ* ) |
| 18 | 2 | rexrd | ⊢ ( 𝜑 → 𝑌 ∈ ℝ* ) |
| 19 | ubicc2 | ⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑌 ∈ ℝ* ∧ 𝑋 ≤ 𝑌 ) → 𝑌 ∈ ( 𝑋 [,] 𝑌 ) ) | |
| 20 | 17 18 3 19 | syl3anc | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑋 [,] 𝑌 ) ) |
| 21 | 15 16 20 12 | fvmptd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑌 ) = 𝐿 ) |
| 22 | cncff | ⊢ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝐾 [,] 𝐿 ) ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝐾 [,] 𝐿 ) ) | |
| 23 | 4 22 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝐾 [,] 𝐿 ) ) |
| 24 | 23 20 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑌 ) ∈ ( 𝐾 [,] 𝐿 ) ) |
| 25 | 21 24 | eqeltrrd | ⊢ ( 𝜑 → 𝐿 ∈ ( 𝐾 [,] 𝐿 ) ) |
| 26 | elicc2 | ⊢ ( ( 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ ) → ( 𝐿 ∈ ( 𝐾 [,] 𝐿 ) ↔ ( 𝐿 ∈ ℝ ∧ 𝐾 ≤ 𝐿 ∧ 𝐿 ≤ 𝐿 ) ) ) | |
| 27 | 11 12 26 | syl2anc | ⊢ ( 𝜑 → ( 𝐿 ∈ ( 𝐾 [,] 𝐿 ) ↔ ( 𝐿 ∈ ℝ ∧ 𝐾 ≤ 𝐿 ∧ 𝐿 ≤ 𝐿 ) ) ) |
| 28 | 25 27 | mpbid | ⊢ ( 𝜑 → ( 𝐿 ∈ ℝ ∧ 𝐾 ≤ 𝐿 ∧ 𝐿 ≤ 𝐿 ) ) |
| 29 | 28 | simp2d | ⊢ ( 𝜑 → 𝐾 ≤ 𝐿 ) |
| 30 | 13 14 1 2 3 4 6 5 11 12 29 7 8 9 10 | itgsubsticclem | ⊢ ( 𝜑 → ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋 → 𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) |