This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Calculation of the integral for sine on the (0,π) interval. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | itgsin0pilem1.1 | ⊢ 𝐶 = ( 𝑡 ∈ ( 0 [,] π ) ↦ - ( cos ‘ 𝑡 ) ) | |
| Assertion | itgsin0pilem1 | ⊢ ∫ ( 0 (,) π ) ( sin ‘ 𝑥 ) d 𝑥 = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgsin0pilem1.1 | ⊢ 𝐶 = ( 𝑡 ∈ ( 0 [,] π ) ↦ - ( cos ‘ 𝑡 ) ) | |
| 2 | fveq2 | ⊢ ( 𝑡 = 𝑥 → ( cos ‘ 𝑡 ) = ( cos ‘ 𝑥 ) ) | |
| 3 | 2 | negeqd | ⊢ ( 𝑡 = 𝑥 → - ( cos ‘ 𝑡 ) = - ( cos ‘ 𝑥 ) ) |
| 4 | 3 | cbvmptv | ⊢ ( 𝑡 ∈ ( 0 [,] π ) ↦ - ( cos ‘ 𝑡 ) ) = ( 𝑥 ∈ ( 0 [,] π ) ↦ - ( cos ‘ 𝑥 ) ) |
| 5 | 1 4 | eqtri | ⊢ 𝐶 = ( 𝑥 ∈ ( 0 [,] π ) ↦ - ( cos ‘ 𝑥 ) ) |
| 6 | 5 | oveq2i | ⊢ ( ℝ D 𝐶 ) = ( ℝ D ( 𝑥 ∈ ( 0 [,] π ) ↦ - ( cos ‘ 𝑥 ) ) ) |
| 7 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 8 | 7 | a1i | ⊢ ( ⊤ → ℝ ⊆ ℂ ) |
| 9 | 0re | ⊢ 0 ∈ ℝ | |
| 10 | pire | ⊢ π ∈ ℝ | |
| 11 | iccssre | ⊢ ( ( 0 ∈ ℝ ∧ π ∈ ℝ ) → ( 0 [,] π ) ⊆ ℝ ) | |
| 12 | 9 10 11 | mp2an | ⊢ ( 0 [,] π ) ⊆ ℝ |
| 13 | 12 | a1i | ⊢ ( ⊤ → ( 0 [,] π ) ⊆ ℝ ) |
| 14 | 12 7 | sstri | ⊢ ( 0 [,] π ) ⊆ ℂ |
| 15 | 14 | sseli | ⊢ ( 𝑥 ∈ ( 0 [,] π ) → 𝑥 ∈ ℂ ) |
| 16 | 15 | coscld | ⊢ ( 𝑥 ∈ ( 0 [,] π ) → ( cos ‘ 𝑥 ) ∈ ℂ ) |
| 17 | 16 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 0 [,] π ) ) → ( cos ‘ 𝑥 ) ∈ ℂ ) |
| 18 | 17 | negcld | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 0 [,] π ) ) → - ( cos ‘ 𝑥 ) ∈ ℂ ) |
| 19 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 20 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 21 | iccntr | ⊢ ( ( 0 ∈ ℝ ∧ π ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 0 [,] π ) ) = ( 0 (,) π ) ) | |
| 22 | 9 10 21 | mp2an | ⊢ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 0 [,] π ) ) = ( 0 (,) π ) |
| 23 | 22 | a1i | ⊢ ( ⊤ → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 0 [,] π ) ) = ( 0 (,) π ) ) |
| 24 | 8 13 18 19 20 23 | dvmptntr | ⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ( 0 [,] π ) ↦ - ( cos ‘ 𝑥 ) ) ) = ( ℝ D ( 𝑥 ∈ ( 0 (,) π ) ↦ - ( cos ‘ 𝑥 ) ) ) ) |
| 25 | 24 | mptru | ⊢ ( ℝ D ( 𝑥 ∈ ( 0 [,] π ) ↦ - ( cos ‘ 𝑥 ) ) ) = ( ℝ D ( 𝑥 ∈ ( 0 (,) π ) ↦ - ( cos ‘ 𝑥 ) ) ) |
| 26 | reelprrecn | ⊢ ℝ ∈ { ℝ , ℂ } | |
| 27 | 26 | a1i | ⊢ ( ⊤ → ℝ ∈ { ℝ , ℂ } ) |
| 28 | recn | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) | |
| 29 | 28 | coscld | ⊢ ( 𝑥 ∈ ℝ → ( cos ‘ 𝑥 ) ∈ ℂ ) |
| 30 | 29 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → ( cos ‘ 𝑥 ) ∈ ℂ ) |
| 31 | 30 | negcld | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → - ( cos ‘ 𝑥 ) ∈ ℂ ) |
| 32 | 28 | sincld | ⊢ ( 𝑥 ∈ ℝ → ( sin ‘ 𝑥 ) ∈ ℂ ) |
| 33 | 32 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → ( sin ‘ 𝑥 ) ∈ ℂ ) |
| 34 | 32 | negcld | ⊢ ( 𝑥 ∈ ℝ → - ( sin ‘ 𝑥 ) ∈ ℂ ) |
| 35 | 34 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → - ( sin ‘ 𝑥 ) ∈ ℂ ) |
| 36 | dvcosre | ⊢ ( ℝ D ( 𝑥 ∈ ℝ ↦ ( cos ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ ↦ - ( sin ‘ 𝑥 ) ) | |
| 37 | 36 | a1i | ⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ℝ ↦ ( cos ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ ↦ - ( sin ‘ 𝑥 ) ) ) |
| 38 | 27 30 35 37 | dvmptneg | ⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ℝ ↦ - ( cos ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ ↦ - - ( sin ‘ 𝑥 ) ) ) |
| 39 | 32 | negnegd | ⊢ ( 𝑥 ∈ ℝ → - - ( sin ‘ 𝑥 ) = ( sin ‘ 𝑥 ) ) |
| 40 | 39 | mpteq2ia | ⊢ ( 𝑥 ∈ ℝ ↦ - - ( sin ‘ 𝑥 ) ) = ( 𝑥 ∈ ℝ ↦ ( sin ‘ 𝑥 ) ) |
| 41 | 38 40 | eqtrdi | ⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ℝ ↦ - ( cos ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( sin ‘ 𝑥 ) ) ) |
| 42 | ioossre | ⊢ ( 0 (,) π ) ⊆ ℝ | |
| 43 | 42 | a1i | ⊢ ( ⊤ → ( 0 (,) π ) ⊆ ℝ ) |
| 44 | iooretop | ⊢ ( 0 (,) π ) ∈ ( topGen ‘ ran (,) ) | |
| 45 | 44 | a1i | ⊢ ( ⊤ → ( 0 (,) π ) ∈ ( topGen ‘ ran (,) ) ) |
| 46 | 27 31 33 41 43 19 20 45 | dvmptres | ⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ( 0 (,) π ) ↦ - ( cos ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 0 (,) π ) ↦ ( sin ‘ 𝑥 ) ) ) |
| 47 | 46 | mptru | ⊢ ( ℝ D ( 𝑥 ∈ ( 0 (,) π ) ↦ - ( cos ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 0 (,) π ) ↦ ( sin ‘ 𝑥 ) ) |
| 48 | 6 25 47 | 3eqtri | ⊢ ( ℝ D 𝐶 ) = ( 𝑥 ∈ ( 0 (,) π ) ↦ ( sin ‘ 𝑥 ) ) |
| 49 | 48 | fveq1i | ⊢ ( ( ℝ D 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ( 0 (,) π ) ↦ ( sin ‘ 𝑥 ) ) ‘ 𝑥 ) |
| 50 | 42 7 | sstri | ⊢ ( 0 (,) π ) ⊆ ℂ |
| 51 | 50 | sseli | ⊢ ( 𝑥 ∈ ( 0 (,) π ) → 𝑥 ∈ ℂ ) |
| 52 | 51 | sincld | ⊢ ( 𝑥 ∈ ( 0 (,) π ) → ( sin ‘ 𝑥 ) ∈ ℂ ) |
| 53 | eqid | ⊢ ( 𝑥 ∈ ( 0 (,) π ) ↦ ( sin ‘ 𝑥 ) ) = ( 𝑥 ∈ ( 0 (,) π ) ↦ ( sin ‘ 𝑥 ) ) | |
| 54 | 53 | fvmpt2 | ⊢ ( ( 𝑥 ∈ ( 0 (,) π ) ∧ ( sin ‘ 𝑥 ) ∈ ℂ ) → ( ( 𝑥 ∈ ( 0 (,) π ) ↦ ( sin ‘ 𝑥 ) ) ‘ 𝑥 ) = ( sin ‘ 𝑥 ) ) |
| 55 | 52 54 | mpdan | ⊢ ( 𝑥 ∈ ( 0 (,) π ) → ( ( 𝑥 ∈ ( 0 (,) π ) ↦ ( sin ‘ 𝑥 ) ) ‘ 𝑥 ) = ( sin ‘ 𝑥 ) ) |
| 56 | 49 55 | eqtrid | ⊢ ( 𝑥 ∈ ( 0 (,) π ) → ( ( ℝ D 𝐶 ) ‘ 𝑥 ) = ( sin ‘ 𝑥 ) ) |
| 57 | 56 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( ( ℝ D 𝐶 ) ‘ 𝑥 ) = ( sin ‘ 𝑥 ) ) |
| 58 | 57 | itgeq2dv | ⊢ ( ⊤ → ∫ ( 0 (,) π ) ( ( ℝ D 𝐶 ) ‘ 𝑥 ) d 𝑥 = ∫ ( 0 (,) π ) ( sin ‘ 𝑥 ) d 𝑥 ) |
| 59 | 58 | mptru | ⊢ ∫ ( 0 (,) π ) ( ( ℝ D 𝐶 ) ‘ 𝑥 ) d 𝑥 = ∫ ( 0 (,) π ) ( sin ‘ 𝑥 ) d 𝑥 |
| 60 | 9 | a1i | ⊢ ( ⊤ → 0 ∈ ℝ ) |
| 61 | 10 | a1i | ⊢ ( ⊤ → π ∈ ℝ ) |
| 62 | pipos | ⊢ 0 < π | |
| 63 | 9 10 62 | ltleii | ⊢ 0 ≤ π |
| 64 | 63 | a1i | ⊢ ( ⊤ → 0 ≤ π ) |
| 65 | nfcv | ⊢ Ⅎ 𝑥 sin | |
| 66 | sincn | ⊢ sin ∈ ( ℂ –cn→ ℂ ) | |
| 67 | 66 | a1i | ⊢ ( ⊤ → sin ∈ ( ℂ –cn→ ℂ ) ) |
| 68 | 50 | a1i | ⊢ ( ⊤ → ( 0 (,) π ) ⊆ ℂ ) |
| 69 | 65 67 68 | cncfmptss | ⊢ ( ⊤ → ( 𝑥 ∈ ( 0 (,) π ) ↦ ( sin ‘ 𝑥 ) ) ∈ ( ( 0 (,) π ) –cn→ ℂ ) ) |
| 70 | 48 69 | eqeltrid | ⊢ ( ⊤ → ( ℝ D 𝐶 ) ∈ ( ( 0 (,) π ) –cn→ ℂ ) ) |
| 71 | ioossicc | ⊢ ( 0 (,) π ) ⊆ ( 0 [,] π ) | |
| 72 | 71 | a1i | ⊢ ( ⊤ → ( 0 (,) π ) ⊆ ( 0 [,] π ) ) |
| 73 | ioombl | ⊢ ( 0 (,) π ) ∈ dom vol | |
| 74 | 73 | a1i | ⊢ ( ⊤ → ( 0 (,) π ) ∈ dom vol ) |
| 75 | 15 | sincld | ⊢ ( 𝑥 ∈ ( 0 [,] π ) → ( sin ‘ 𝑥 ) ∈ ℂ ) |
| 76 | 75 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 0 [,] π ) ) → ( sin ‘ 𝑥 ) ∈ ℂ ) |
| 77 | 14 | a1i | ⊢ ( ⊤ → ( 0 [,] π ) ⊆ ℂ ) |
| 78 | 65 67 77 | cncfmptss | ⊢ ( ⊤ → ( 𝑥 ∈ ( 0 [,] π ) ↦ ( sin ‘ 𝑥 ) ) ∈ ( ( 0 [,] π ) –cn→ ℂ ) ) |
| 79 | 78 | mptru | ⊢ ( 𝑥 ∈ ( 0 [,] π ) ↦ ( sin ‘ 𝑥 ) ) ∈ ( ( 0 [,] π ) –cn→ ℂ ) |
| 80 | cniccibl | ⊢ ( ( 0 ∈ ℝ ∧ π ∈ ℝ ∧ ( 𝑥 ∈ ( 0 [,] π ) ↦ ( sin ‘ 𝑥 ) ) ∈ ( ( 0 [,] π ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( 0 [,] π ) ↦ ( sin ‘ 𝑥 ) ) ∈ 𝐿1 ) | |
| 81 | 9 10 79 80 | mp3an | ⊢ ( 𝑥 ∈ ( 0 [,] π ) ↦ ( sin ‘ 𝑥 ) ) ∈ 𝐿1 |
| 82 | 81 | a1i | ⊢ ( ⊤ → ( 𝑥 ∈ ( 0 [,] π ) ↦ ( sin ‘ 𝑥 ) ) ∈ 𝐿1 ) |
| 83 | 72 74 76 82 | iblss | ⊢ ( ⊤ → ( 𝑥 ∈ ( 0 (,) π ) ↦ ( sin ‘ 𝑥 ) ) ∈ 𝐿1 ) |
| 84 | 48 83 | eqeltrid | ⊢ ( ⊤ → ( ℝ D 𝐶 ) ∈ 𝐿1 ) |
| 85 | 16 | negcld | ⊢ ( 𝑥 ∈ ( 0 [,] π ) → - ( cos ‘ 𝑥 ) ∈ ℂ ) |
| 86 | eqid | ⊢ ( 𝑥 ∈ ℂ ↦ - ( cos ‘ 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ - ( cos ‘ 𝑥 ) ) | |
| 87 | 86 | fvmpt2 | ⊢ ( ( 𝑥 ∈ ℂ ∧ - ( cos ‘ 𝑥 ) ∈ ℂ ) → ( ( 𝑥 ∈ ℂ ↦ - ( cos ‘ 𝑥 ) ) ‘ 𝑥 ) = - ( cos ‘ 𝑥 ) ) |
| 88 | 15 85 87 | syl2anc | ⊢ ( 𝑥 ∈ ( 0 [,] π ) → ( ( 𝑥 ∈ ℂ ↦ - ( cos ‘ 𝑥 ) ) ‘ 𝑥 ) = - ( cos ‘ 𝑥 ) ) |
| 89 | 88 | eqcomd | ⊢ ( 𝑥 ∈ ( 0 [,] π ) → - ( cos ‘ 𝑥 ) = ( ( 𝑥 ∈ ℂ ↦ - ( cos ‘ 𝑥 ) ) ‘ 𝑥 ) ) |
| 90 | 89 | mpteq2ia | ⊢ ( 𝑥 ∈ ( 0 [,] π ) ↦ - ( cos ‘ 𝑥 ) ) = ( 𝑥 ∈ ( 0 [,] π ) ↦ ( ( 𝑥 ∈ ℂ ↦ - ( cos ‘ 𝑥 ) ) ‘ 𝑥 ) ) |
| 91 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ ℂ ↦ - ( cos ‘ 𝑥 ) ) | |
| 92 | coscn | ⊢ cos ∈ ( ℂ –cn→ ℂ ) | |
| 93 | 86 | negfcncf | ⊢ ( cos ∈ ( ℂ –cn→ ℂ ) → ( 𝑥 ∈ ℂ ↦ - ( cos ‘ 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 94 | 92 93 | ax-mp | ⊢ ( 𝑥 ∈ ℂ ↦ - ( cos ‘ 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) |
| 95 | 94 | a1i | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ - ( cos ‘ 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 96 | 91 95 77 | cncfmptss | ⊢ ( ⊤ → ( 𝑥 ∈ ( 0 [,] π ) ↦ ( ( 𝑥 ∈ ℂ ↦ - ( cos ‘ 𝑥 ) ) ‘ 𝑥 ) ) ∈ ( ( 0 [,] π ) –cn→ ℂ ) ) |
| 97 | 96 | mptru | ⊢ ( 𝑥 ∈ ( 0 [,] π ) ↦ ( ( 𝑥 ∈ ℂ ↦ - ( cos ‘ 𝑥 ) ) ‘ 𝑥 ) ) ∈ ( ( 0 [,] π ) –cn→ ℂ ) |
| 98 | 90 97 | eqeltri | ⊢ ( 𝑥 ∈ ( 0 [,] π ) ↦ - ( cos ‘ 𝑥 ) ) ∈ ( ( 0 [,] π ) –cn→ ℂ ) |
| 99 | 5 98 | eqeltri | ⊢ 𝐶 ∈ ( ( 0 [,] π ) –cn→ ℂ ) |
| 100 | 99 | a1i | ⊢ ( ⊤ → 𝐶 ∈ ( ( 0 [,] π ) –cn→ ℂ ) ) |
| 101 | 60 61 64 70 84 100 | ftc2 | ⊢ ( ⊤ → ∫ ( 0 (,) π ) ( ( ℝ D 𝐶 ) ‘ 𝑥 ) d 𝑥 = ( ( 𝐶 ‘ π ) − ( 𝐶 ‘ 0 ) ) ) |
| 102 | 101 | mptru | ⊢ ∫ ( 0 (,) π ) ( ( ℝ D 𝐶 ) ‘ 𝑥 ) d 𝑥 = ( ( 𝐶 ‘ π ) − ( 𝐶 ‘ 0 ) ) |
| 103 | 59 102 | eqtr3i | ⊢ ∫ ( 0 (,) π ) ( sin ‘ 𝑥 ) d 𝑥 = ( ( 𝐶 ‘ π ) − ( 𝐶 ‘ 0 ) ) |
| 104 | 0xr | ⊢ 0 ∈ ℝ* | |
| 105 | 10 | rexri | ⊢ π ∈ ℝ* |
| 106 | ubicc2 | ⊢ ( ( 0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π ) → π ∈ ( 0 [,] π ) ) | |
| 107 | 104 105 63 106 | mp3an | ⊢ π ∈ ( 0 [,] π ) |
| 108 | fveq2 | ⊢ ( 𝑡 = π → ( cos ‘ 𝑡 ) = ( cos ‘ π ) ) | |
| 109 | cospi | ⊢ ( cos ‘ π ) = - 1 | |
| 110 | 108 109 | eqtrdi | ⊢ ( 𝑡 = π → ( cos ‘ 𝑡 ) = - 1 ) |
| 111 | 110 | negeqd | ⊢ ( 𝑡 = π → - ( cos ‘ 𝑡 ) = - - 1 ) |
| 112 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 113 | 112 | a1i | ⊢ ( 𝑡 = π → 1 ∈ ℂ ) |
| 114 | 113 | negnegd | ⊢ ( 𝑡 = π → - - 1 = 1 ) |
| 115 | 111 114 | eqtrd | ⊢ ( 𝑡 = π → - ( cos ‘ 𝑡 ) = 1 ) |
| 116 | 1ex | ⊢ 1 ∈ V | |
| 117 | 115 1 116 | fvmpt | ⊢ ( π ∈ ( 0 [,] π ) → ( 𝐶 ‘ π ) = 1 ) |
| 118 | 107 117 | ax-mp | ⊢ ( 𝐶 ‘ π ) = 1 |
| 119 | lbicc2 | ⊢ ( ( 0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π ) → 0 ∈ ( 0 [,] π ) ) | |
| 120 | 104 105 63 119 | mp3an | ⊢ 0 ∈ ( 0 [,] π ) |
| 121 | fveq2 | ⊢ ( 𝑡 = 0 → ( cos ‘ 𝑡 ) = ( cos ‘ 0 ) ) | |
| 122 | 121 | negeqd | ⊢ ( 𝑡 = 0 → - ( cos ‘ 𝑡 ) = - ( cos ‘ 0 ) ) |
| 123 | negex | ⊢ - ( cos ‘ 0 ) ∈ V | |
| 124 | 122 1 123 | fvmpt | ⊢ ( 0 ∈ ( 0 [,] π ) → ( 𝐶 ‘ 0 ) = - ( cos ‘ 0 ) ) |
| 125 | 120 124 | ax-mp | ⊢ ( 𝐶 ‘ 0 ) = - ( cos ‘ 0 ) |
| 126 | cos0 | ⊢ ( cos ‘ 0 ) = 1 | |
| 127 | 126 | negeqi | ⊢ - ( cos ‘ 0 ) = - 1 |
| 128 | 125 127 | eqtri | ⊢ ( 𝐶 ‘ 0 ) = - 1 |
| 129 | 118 128 | oveq12i | ⊢ ( ( 𝐶 ‘ π ) − ( 𝐶 ‘ 0 ) ) = ( 1 − - 1 ) |
| 130 | 112 112 | subnegi | ⊢ ( 1 − - 1 ) = ( 1 + 1 ) |
| 131 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 132 | 130 131 | eqtri | ⊢ ( 1 − - 1 ) = 2 |
| 133 | 103 129 132 | 3eqtri | ⊢ ∫ ( 0 (,) π ) ( sin ‘ 𝑥 ) d 𝑥 = 2 |