This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cosine of _pi is -u 1 . (Contributed by Paul Chapman, 23-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cospi | ⊢ ( cos ‘ π ) = - 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | picn | ⊢ π ∈ ℂ | |
| 2 | 2cn | ⊢ 2 ∈ ℂ | |
| 3 | 2ne0 | ⊢ 2 ≠ 0 | |
| 4 | 1 2 3 | divcli | ⊢ ( π / 2 ) ∈ ℂ |
| 5 | cos2t | ⊢ ( ( π / 2 ) ∈ ℂ → ( cos ‘ ( 2 · ( π / 2 ) ) ) = ( ( 2 · ( ( cos ‘ ( π / 2 ) ) ↑ 2 ) ) − 1 ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( cos ‘ ( 2 · ( π / 2 ) ) ) = ( ( 2 · ( ( cos ‘ ( π / 2 ) ) ↑ 2 ) ) − 1 ) |
| 7 | 1 2 3 | divcan2i | ⊢ ( 2 · ( π / 2 ) ) = π |
| 8 | 7 | fveq2i | ⊢ ( cos ‘ ( 2 · ( π / 2 ) ) ) = ( cos ‘ π ) |
| 9 | coshalfpi | ⊢ ( cos ‘ ( π / 2 ) ) = 0 | |
| 10 | 9 | oveq1i | ⊢ ( ( cos ‘ ( π / 2 ) ) ↑ 2 ) = ( 0 ↑ 2 ) |
| 11 | sq0 | ⊢ ( 0 ↑ 2 ) = 0 | |
| 12 | 10 11 | eqtri | ⊢ ( ( cos ‘ ( π / 2 ) ) ↑ 2 ) = 0 |
| 13 | 12 | oveq2i | ⊢ ( 2 · ( ( cos ‘ ( π / 2 ) ) ↑ 2 ) ) = ( 2 · 0 ) |
| 14 | 2t0e0 | ⊢ ( 2 · 0 ) = 0 | |
| 15 | 13 14 | eqtri | ⊢ ( 2 · ( ( cos ‘ ( π / 2 ) ) ↑ 2 ) ) = 0 |
| 16 | 15 | oveq1i | ⊢ ( ( 2 · ( ( cos ‘ ( π / 2 ) ) ↑ 2 ) ) − 1 ) = ( 0 − 1 ) |
| 17 | df-neg | ⊢ - 1 = ( 0 − 1 ) | |
| 18 | 16 17 | eqtr4i | ⊢ ( ( 2 · ( ( cos ‘ ( π / 2 ) ) ↑ 2 ) ) − 1 ) = - 1 |
| 19 | 6 8 18 | 3eqtr3i | ⊢ ( cos ‘ π ) = - 1 |