This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous complex function restricted to a subset is continuous, using maps-to notation. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfmptss.1 | ⊢ Ⅎ 𝑥 𝐹 | |
| cncfmptss.2 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) | ||
| cncfmptss.3 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | ||
| Assertion | cncfmptss | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐶 –cn→ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfmptss.1 | ⊢ Ⅎ 𝑥 𝐹 | |
| 2 | cncfmptss.2 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) | |
| 3 | cncfmptss.3 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | |
| 4 | 3 | resmptd | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑦 ) ) ↾ 𝐶 ) = ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 5 | cncff | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 6 | 2 5 | syl | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 7 | 6 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 8 | 7 | reseq1d | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) = ( ( 𝑦 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑦 ) ) ↾ 𝐶 ) ) |
| 9 | nfcv | ⊢ Ⅎ 𝑦 𝐹 | |
| 10 | nfcv | ⊢ Ⅎ 𝑦 𝑥 | |
| 11 | 9 10 | nffv | ⊢ Ⅎ 𝑦 ( 𝐹 ‘ 𝑥 ) |
| 12 | nfcv | ⊢ Ⅎ 𝑥 𝑦 | |
| 13 | 1 12 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) |
| 14 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 15 | 11 13 14 | cbvmpt | ⊢ ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑦 ) ) |
| 16 | 15 | a1i | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 17 | 4 8 16 | 3eqtr4rd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ↾ 𝐶 ) ) |
| 18 | rescncf | ⊢ ( 𝐶 ⊆ 𝐴 → ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) → ( 𝐹 ↾ 𝐶 ) ∈ ( 𝐶 –cn→ 𝐵 ) ) ) | |
| 19 | 3 2 18 | sylc | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) ∈ ( 𝐶 –cn→ 𝐵 ) ) |
| 20 | 17 19 | eqeltrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐶 –cn→ 𝐵 ) ) |