This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The real derivative of the cosine. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvcosre | ⊢ ( ℝ D ( 𝑥 ∈ ℝ ↦ ( cos ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ ↦ - ( sin ‘ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reelprrecn | ⊢ ℝ ∈ { ℝ , ℂ } | |
| 2 | cosf | ⊢ cos : ℂ ⟶ ℂ | |
| 3 | ssid | ⊢ ℂ ⊆ ℂ | |
| 4 | nfcv | ⊢ Ⅎ 𝑥 ℝ | |
| 5 | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∈ ℂ ∣ - ( sin ‘ 𝑥 ) ∈ V } | |
| 6 | 4 5 | dfssf | ⊢ ( ℝ ⊆ { 𝑥 ∈ ℂ ∣ - ( sin ‘ 𝑥 ) ∈ V } ↔ ∀ 𝑥 ( 𝑥 ∈ ℝ → 𝑥 ∈ { 𝑥 ∈ ℂ ∣ - ( sin ‘ 𝑥 ) ∈ V } ) ) |
| 7 | recn | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) | |
| 8 | 7 | sincld | ⊢ ( 𝑥 ∈ ℝ → ( sin ‘ 𝑥 ) ∈ ℂ ) |
| 9 | 8 | negcld | ⊢ ( 𝑥 ∈ ℝ → - ( sin ‘ 𝑥 ) ∈ ℂ ) |
| 10 | elex | ⊢ ( - ( sin ‘ 𝑥 ) ∈ ℂ → - ( sin ‘ 𝑥 ) ∈ V ) | |
| 11 | 9 10 | syl | ⊢ ( 𝑥 ∈ ℝ → - ( sin ‘ 𝑥 ) ∈ V ) |
| 12 | rabid | ⊢ ( 𝑥 ∈ { 𝑥 ∈ ℂ ∣ - ( sin ‘ 𝑥 ) ∈ V } ↔ ( 𝑥 ∈ ℂ ∧ - ( sin ‘ 𝑥 ) ∈ V ) ) | |
| 13 | 7 11 12 | sylanbrc | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ { 𝑥 ∈ ℂ ∣ - ( sin ‘ 𝑥 ) ∈ V } ) |
| 14 | 6 13 | mpgbir | ⊢ ℝ ⊆ { 𝑥 ∈ ℂ ∣ - ( sin ‘ 𝑥 ) ∈ V } |
| 15 | dvcos | ⊢ ( ℂ D cos ) = ( 𝑥 ∈ ℂ ↦ - ( sin ‘ 𝑥 ) ) | |
| 16 | 15 | dmmpt | ⊢ dom ( ℂ D cos ) = { 𝑥 ∈ ℂ ∣ - ( sin ‘ 𝑥 ) ∈ V } |
| 17 | 14 16 | sseqtrri | ⊢ ℝ ⊆ dom ( ℂ D cos ) |
| 18 | dvres3 | ⊢ ( ( ( ℝ ∈ { ℝ , ℂ } ∧ cos : ℂ ⟶ ℂ ) ∧ ( ℂ ⊆ ℂ ∧ ℝ ⊆ dom ( ℂ D cos ) ) ) → ( ℝ D ( cos ↾ ℝ ) ) = ( ( ℂ D cos ) ↾ ℝ ) ) | |
| 19 | 1 2 3 17 18 | mp4an | ⊢ ( ℝ D ( cos ↾ ℝ ) ) = ( ( ℂ D cos ) ↾ ℝ ) |
| 20 | ffn | ⊢ ( cos : ℂ ⟶ ℂ → cos Fn ℂ ) | |
| 21 | 2 20 | ax-mp | ⊢ cos Fn ℂ |
| 22 | dffn5 | ⊢ ( cos Fn ℂ ↔ cos = ( 𝑥 ∈ ℂ ↦ ( cos ‘ 𝑥 ) ) ) | |
| 23 | 21 22 | mpbi | ⊢ cos = ( 𝑥 ∈ ℂ ↦ ( cos ‘ 𝑥 ) ) |
| 24 | 23 | reseq1i | ⊢ ( cos ↾ ℝ ) = ( ( 𝑥 ∈ ℂ ↦ ( cos ‘ 𝑥 ) ) ↾ ℝ ) |
| 25 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 26 | resmpt | ⊢ ( ℝ ⊆ ℂ → ( ( 𝑥 ∈ ℂ ↦ ( cos ‘ 𝑥 ) ) ↾ ℝ ) = ( 𝑥 ∈ ℝ ↦ ( cos ‘ 𝑥 ) ) ) | |
| 27 | 25 26 | ax-mp | ⊢ ( ( 𝑥 ∈ ℂ ↦ ( cos ‘ 𝑥 ) ) ↾ ℝ ) = ( 𝑥 ∈ ℝ ↦ ( cos ‘ 𝑥 ) ) |
| 28 | 24 27 | eqtri | ⊢ ( cos ↾ ℝ ) = ( 𝑥 ∈ ℝ ↦ ( cos ‘ 𝑥 ) ) |
| 29 | 28 | oveq2i | ⊢ ( ℝ D ( cos ↾ ℝ ) ) = ( ℝ D ( 𝑥 ∈ ℝ ↦ ( cos ‘ 𝑥 ) ) ) |
| 30 | 15 | reseq1i | ⊢ ( ( ℂ D cos ) ↾ ℝ ) = ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ 𝑥 ) ) ↾ ℝ ) |
| 31 | resmpt | ⊢ ( ℝ ⊆ ℂ → ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ 𝑥 ) ) ↾ ℝ ) = ( 𝑥 ∈ ℝ ↦ - ( sin ‘ 𝑥 ) ) ) | |
| 32 | 25 31 | ax-mp | ⊢ ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ 𝑥 ) ) ↾ ℝ ) = ( 𝑥 ∈ ℝ ↦ - ( sin ‘ 𝑥 ) ) |
| 33 | 30 32 | eqtri | ⊢ ( ( ℂ D cos ) ↾ ℝ ) = ( 𝑥 ∈ ℝ ↦ - ( sin ‘ 𝑥 ) ) |
| 34 | 19 29 33 | 3eqtr3i | ⊢ ( ℝ D ( 𝑥 ∈ ℝ ↦ ( cos ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ ↦ - ( sin ‘ 𝑥 ) ) |