This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: sin^n on a closed interval is integrable. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ibliccsinexp | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ∈ 𝐿1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 2 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 3 | 1 2 | sstrdi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 4 | 3 | sselda | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℂ ) |
| 5 | 4 | 3adantl3 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℂ ) |
| 6 | 5 | sincld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( sin ‘ 𝑥 ) ∈ ℂ ) |
| 7 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑁 ∈ ℕ0 ) | |
| 8 | 6 7 | expcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ∈ ℂ ) |
| 9 | eqid | ⊢ ( 𝑥 ∈ ℂ ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) = ( 𝑥 ∈ ℂ ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) | |
| 10 | 9 | fvmpt2 | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ∈ ℂ ) → ( ( 𝑥 ∈ ℂ ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ‘ 𝑥 ) = ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) |
| 11 | 5 8 10 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℂ ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ‘ 𝑥 ) = ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) |
| 12 | 11 | eqcomd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) = ( ( 𝑥 ∈ ℂ ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ‘ 𝑥 ) ) |
| 13 | 12 | mpteq2dva | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑥 ∈ ℂ ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ‘ 𝑥 ) ) ) |
| 14 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ ℂ ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) | |
| 15 | nfcv | ⊢ Ⅎ 𝑥 sin | |
| 16 | sincn | ⊢ sin ∈ ( ℂ –cn→ ℂ ) | |
| 17 | 16 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → sin ∈ ( ℂ –cn→ ℂ ) ) |
| 18 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) | |
| 19 | 15 17 18 | expcnfg | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑥 ∈ ℂ ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 20 | 3 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 21 | 14 19 20 | cncfmptss | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑥 ∈ ℂ ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ‘ 𝑥 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 22 | 13 21 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 23 | cniccibl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ∈ 𝐿1 ) | |
| 24 | 22 23 | syld3an3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ∈ 𝐿1 ) |