This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Calculation of the integral for sine on the (0,π) interval. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | itgsin0pilem1.1 | |- C = ( t e. ( 0 [,] _pi ) |-> -u ( cos ` t ) ) |
|
| Assertion | itgsin0pilem1 | |- S. ( 0 (,) _pi ) ( sin ` x ) _d x = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgsin0pilem1.1 | |- C = ( t e. ( 0 [,] _pi ) |-> -u ( cos ` t ) ) |
|
| 2 | fveq2 | |- ( t = x -> ( cos ` t ) = ( cos ` x ) ) |
|
| 3 | 2 | negeqd | |- ( t = x -> -u ( cos ` t ) = -u ( cos ` x ) ) |
| 4 | 3 | cbvmptv | |- ( t e. ( 0 [,] _pi ) |-> -u ( cos ` t ) ) = ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) |
| 5 | 1 4 | eqtri | |- C = ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) |
| 6 | 5 | oveq2i | |- ( RR _D C ) = ( RR _D ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) ) |
| 7 | ax-resscn | |- RR C_ CC |
|
| 8 | 7 | a1i | |- ( T. -> RR C_ CC ) |
| 9 | 0re | |- 0 e. RR |
|
| 10 | pire | |- _pi e. RR |
|
| 11 | iccssre | |- ( ( 0 e. RR /\ _pi e. RR ) -> ( 0 [,] _pi ) C_ RR ) |
|
| 12 | 9 10 11 | mp2an | |- ( 0 [,] _pi ) C_ RR |
| 13 | 12 | a1i | |- ( T. -> ( 0 [,] _pi ) C_ RR ) |
| 14 | 12 7 | sstri | |- ( 0 [,] _pi ) C_ CC |
| 15 | 14 | sseli | |- ( x e. ( 0 [,] _pi ) -> x e. CC ) |
| 16 | 15 | coscld | |- ( x e. ( 0 [,] _pi ) -> ( cos ` x ) e. CC ) |
| 17 | 16 | adantl | |- ( ( T. /\ x e. ( 0 [,] _pi ) ) -> ( cos ` x ) e. CC ) |
| 18 | 17 | negcld | |- ( ( T. /\ x e. ( 0 [,] _pi ) ) -> -u ( cos ` x ) e. CC ) |
| 19 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 20 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 21 | iccntr | |- ( ( 0 e. RR /\ _pi e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] _pi ) ) = ( 0 (,) _pi ) ) |
|
| 22 | 9 10 21 | mp2an | |- ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] _pi ) ) = ( 0 (,) _pi ) |
| 23 | 22 | a1i | |- ( T. -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] _pi ) ) = ( 0 (,) _pi ) ) |
| 24 | 8 13 18 19 20 23 | dvmptntr | |- ( T. -> ( RR _D ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) ) = ( RR _D ( x e. ( 0 (,) _pi ) |-> -u ( cos ` x ) ) ) ) |
| 25 | 24 | mptru | |- ( RR _D ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) ) = ( RR _D ( x e. ( 0 (,) _pi ) |-> -u ( cos ` x ) ) ) |
| 26 | reelprrecn | |- RR e. { RR , CC } |
|
| 27 | 26 | a1i | |- ( T. -> RR e. { RR , CC } ) |
| 28 | recn | |- ( x e. RR -> x e. CC ) |
|
| 29 | 28 | coscld | |- ( x e. RR -> ( cos ` x ) e. CC ) |
| 30 | 29 | adantl | |- ( ( T. /\ x e. RR ) -> ( cos ` x ) e. CC ) |
| 31 | 30 | negcld | |- ( ( T. /\ x e. RR ) -> -u ( cos ` x ) e. CC ) |
| 32 | 28 | sincld | |- ( x e. RR -> ( sin ` x ) e. CC ) |
| 33 | 32 | adantl | |- ( ( T. /\ x e. RR ) -> ( sin ` x ) e. CC ) |
| 34 | 32 | negcld | |- ( x e. RR -> -u ( sin ` x ) e. CC ) |
| 35 | 34 | adantl | |- ( ( T. /\ x e. RR ) -> -u ( sin ` x ) e. CC ) |
| 36 | dvcosre | |- ( RR _D ( x e. RR |-> ( cos ` x ) ) ) = ( x e. RR |-> -u ( sin ` x ) ) |
|
| 37 | 36 | a1i | |- ( T. -> ( RR _D ( x e. RR |-> ( cos ` x ) ) ) = ( x e. RR |-> -u ( sin ` x ) ) ) |
| 38 | 27 30 35 37 | dvmptneg | |- ( T. -> ( RR _D ( x e. RR |-> -u ( cos ` x ) ) ) = ( x e. RR |-> -u -u ( sin ` x ) ) ) |
| 39 | 32 | negnegd | |- ( x e. RR -> -u -u ( sin ` x ) = ( sin ` x ) ) |
| 40 | 39 | mpteq2ia | |- ( x e. RR |-> -u -u ( sin ` x ) ) = ( x e. RR |-> ( sin ` x ) ) |
| 41 | 38 40 | eqtrdi | |- ( T. -> ( RR _D ( x e. RR |-> -u ( cos ` x ) ) ) = ( x e. RR |-> ( sin ` x ) ) ) |
| 42 | ioossre | |- ( 0 (,) _pi ) C_ RR |
|
| 43 | 42 | a1i | |- ( T. -> ( 0 (,) _pi ) C_ RR ) |
| 44 | iooretop | |- ( 0 (,) _pi ) e. ( topGen ` ran (,) ) |
|
| 45 | 44 | a1i | |- ( T. -> ( 0 (,) _pi ) e. ( topGen ` ran (,) ) ) |
| 46 | 27 31 33 41 43 19 20 45 | dvmptres | |- ( T. -> ( RR _D ( x e. ( 0 (,) _pi ) |-> -u ( cos ` x ) ) ) = ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) ) |
| 47 | 46 | mptru | |- ( RR _D ( x e. ( 0 (,) _pi ) |-> -u ( cos ` x ) ) ) = ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) |
| 48 | 6 25 47 | 3eqtri | |- ( RR _D C ) = ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) |
| 49 | 48 | fveq1i | |- ( ( RR _D C ) ` x ) = ( ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) ` x ) |
| 50 | 42 7 | sstri | |- ( 0 (,) _pi ) C_ CC |
| 51 | 50 | sseli | |- ( x e. ( 0 (,) _pi ) -> x e. CC ) |
| 52 | 51 | sincld | |- ( x e. ( 0 (,) _pi ) -> ( sin ` x ) e. CC ) |
| 53 | eqid | |- ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) = ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) |
|
| 54 | 53 | fvmpt2 | |- ( ( x e. ( 0 (,) _pi ) /\ ( sin ` x ) e. CC ) -> ( ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) ` x ) = ( sin ` x ) ) |
| 55 | 52 54 | mpdan | |- ( x e. ( 0 (,) _pi ) -> ( ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) ` x ) = ( sin ` x ) ) |
| 56 | 49 55 | eqtrid | |- ( x e. ( 0 (,) _pi ) -> ( ( RR _D C ) ` x ) = ( sin ` x ) ) |
| 57 | 56 | adantl | |- ( ( T. /\ x e. ( 0 (,) _pi ) ) -> ( ( RR _D C ) ` x ) = ( sin ` x ) ) |
| 58 | 57 | itgeq2dv | |- ( T. -> S. ( 0 (,) _pi ) ( ( RR _D C ) ` x ) _d x = S. ( 0 (,) _pi ) ( sin ` x ) _d x ) |
| 59 | 58 | mptru | |- S. ( 0 (,) _pi ) ( ( RR _D C ) ` x ) _d x = S. ( 0 (,) _pi ) ( sin ` x ) _d x |
| 60 | 9 | a1i | |- ( T. -> 0 e. RR ) |
| 61 | 10 | a1i | |- ( T. -> _pi e. RR ) |
| 62 | pipos | |- 0 < _pi |
|
| 63 | 9 10 62 | ltleii | |- 0 <_ _pi |
| 64 | 63 | a1i | |- ( T. -> 0 <_ _pi ) |
| 65 | nfcv | |- F/_ x sin |
|
| 66 | sincn | |- sin e. ( CC -cn-> CC ) |
|
| 67 | 66 | a1i | |- ( T. -> sin e. ( CC -cn-> CC ) ) |
| 68 | 50 | a1i | |- ( T. -> ( 0 (,) _pi ) C_ CC ) |
| 69 | 65 67 68 | cncfmptss | |- ( T. -> ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) e. ( ( 0 (,) _pi ) -cn-> CC ) ) |
| 70 | 48 69 | eqeltrid | |- ( T. -> ( RR _D C ) e. ( ( 0 (,) _pi ) -cn-> CC ) ) |
| 71 | ioossicc | |- ( 0 (,) _pi ) C_ ( 0 [,] _pi ) |
|
| 72 | 71 | a1i | |- ( T. -> ( 0 (,) _pi ) C_ ( 0 [,] _pi ) ) |
| 73 | ioombl | |- ( 0 (,) _pi ) e. dom vol |
|
| 74 | 73 | a1i | |- ( T. -> ( 0 (,) _pi ) e. dom vol ) |
| 75 | 15 | sincld | |- ( x e. ( 0 [,] _pi ) -> ( sin ` x ) e. CC ) |
| 76 | 75 | adantl | |- ( ( T. /\ x e. ( 0 [,] _pi ) ) -> ( sin ` x ) e. CC ) |
| 77 | 14 | a1i | |- ( T. -> ( 0 [,] _pi ) C_ CC ) |
| 78 | 65 67 77 | cncfmptss | |- ( T. -> ( x e. ( 0 [,] _pi ) |-> ( sin ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 79 | 78 | mptru | |- ( x e. ( 0 [,] _pi ) |-> ( sin ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) |
| 80 | cniccibl | |- ( ( 0 e. RR /\ _pi e. RR /\ ( x e. ( 0 [,] _pi ) |-> ( sin ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) -> ( x e. ( 0 [,] _pi ) |-> ( sin ` x ) ) e. L^1 ) |
|
| 81 | 9 10 79 80 | mp3an | |- ( x e. ( 0 [,] _pi ) |-> ( sin ` x ) ) e. L^1 |
| 82 | 81 | a1i | |- ( T. -> ( x e. ( 0 [,] _pi ) |-> ( sin ` x ) ) e. L^1 ) |
| 83 | 72 74 76 82 | iblss | |- ( T. -> ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) e. L^1 ) |
| 84 | 48 83 | eqeltrid | |- ( T. -> ( RR _D C ) e. L^1 ) |
| 85 | 16 | negcld | |- ( x e. ( 0 [,] _pi ) -> -u ( cos ` x ) e. CC ) |
| 86 | eqid | |- ( x e. CC |-> -u ( cos ` x ) ) = ( x e. CC |-> -u ( cos ` x ) ) |
|
| 87 | 86 | fvmpt2 | |- ( ( x e. CC /\ -u ( cos ` x ) e. CC ) -> ( ( x e. CC |-> -u ( cos ` x ) ) ` x ) = -u ( cos ` x ) ) |
| 88 | 15 85 87 | syl2anc | |- ( x e. ( 0 [,] _pi ) -> ( ( x e. CC |-> -u ( cos ` x ) ) ` x ) = -u ( cos ` x ) ) |
| 89 | 88 | eqcomd | |- ( x e. ( 0 [,] _pi ) -> -u ( cos ` x ) = ( ( x e. CC |-> -u ( cos ` x ) ) ` x ) ) |
| 90 | 89 | mpteq2ia | |- ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) = ( x e. ( 0 [,] _pi ) |-> ( ( x e. CC |-> -u ( cos ` x ) ) ` x ) ) |
| 91 | nfmpt1 | |- F/_ x ( x e. CC |-> -u ( cos ` x ) ) |
|
| 92 | coscn | |- cos e. ( CC -cn-> CC ) |
|
| 93 | 86 | negfcncf | |- ( cos e. ( CC -cn-> CC ) -> ( x e. CC |-> -u ( cos ` x ) ) e. ( CC -cn-> CC ) ) |
| 94 | 92 93 | ax-mp | |- ( x e. CC |-> -u ( cos ` x ) ) e. ( CC -cn-> CC ) |
| 95 | 94 | a1i | |- ( T. -> ( x e. CC |-> -u ( cos ` x ) ) e. ( CC -cn-> CC ) ) |
| 96 | 91 95 77 | cncfmptss | |- ( T. -> ( x e. ( 0 [,] _pi ) |-> ( ( x e. CC |-> -u ( cos ` x ) ) ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 97 | 96 | mptru | |- ( x e. ( 0 [,] _pi ) |-> ( ( x e. CC |-> -u ( cos ` x ) ) ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) |
| 98 | 90 97 | eqeltri | |- ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) |
| 99 | 5 98 | eqeltri | |- C e. ( ( 0 [,] _pi ) -cn-> CC ) |
| 100 | 99 | a1i | |- ( T. -> C e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 101 | 60 61 64 70 84 100 | ftc2 | |- ( T. -> S. ( 0 (,) _pi ) ( ( RR _D C ) ` x ) _d x = ( ( C ` _pi ) - ( C ` 0 ) ) ) |
| 102 | 101 | mptru | |- S. ( 0 (,) _pi ) ( ( RR _D C ) ` x ) _d x = ( ( C ` _pi ) - ( C ` 0 ) ) |
| 103 | 59 102 | eqtr3i | |- S. ( 0 (,) _pi ) ( sin ` x ) _d x = ( ( C ` _pi ) - ( C ` 0 ) ) |
| 104 | 0xr | |- 0 e. RR* |
|
| 105 | 10 | rexri | |- _pi e. RR* |
| 106 | ubicc2 | |- ( ( 0 e. RR* /\ _pi e. RR* /\ 0 <_ _pi ) -> _pi e. ( 0 [,] _pi ) ) |
|
| 107 | 104 105 63 106 | mp3an | |- _pi e. ( 0 [,] _pi ) |
| 108 | fveq2 | |- ( t = _pi -> ( cos ` t ) = ( cos ` _pi ) ) |
|
| 109 | cospi | |- ( cos ` _pi ) = -u 1 |
|
| 110 | 108 109 | eqtrdi | |- ( t = _pi -> ( cos ` t ) = -u 1 ) |
| 111 | 110 | negeqd | |- ( t = _pi -> -u ( cos ` t ) = -u -u 1 ) |
| 112 | ax-1cn | |- 1 e. CC |
|
| 113 | 112 | a1i | |- ( t = _pi -> 1 e. CC ) |
| 114 | 113 | negnegd | |- ( t = _pi -> -u -u 1 = 1 ) |
| 115 | 111 114 | eqtrd | |- ( t = _pi -> -u ( cos ` t ) = 1 ) |
| 116 | 1ex | |- 1 e. _V |
|
| 117 | 115 1 116 | fvmpt | |- ( _pi e. ( 0 [,] _pi ) -> ( C ` _pi ) = 1 ) |
| 118 | 107 117 | ax-mp | |- ( C ` _pi ) = 1 |
| 119 | lbicc2 | |- ( ( 0 e. RR* /\ _pi e. RR* /\ 0 <_ _pi ) -> 0 e. ( 0 [,] _pi ) ) |
|
| 120 | 104 105 63 119 | mp3an | |- 0 e. ( 0 [,] _pi ) |
| 121 | fveq2 | |- ( t = 0 -> ( cos ` t ) = ( cos ` 0 ) ) |
|
| 122 | 121 | negeqd | |- ( t = 0 -> -u ( cos ` t ) = -u ( cos ` 0 ) ) |
| 123 | negex | |- -u ( cos ` 0 ) e. _V |
|
| 124 | 122 1 123 | fvmpt | |- ( 0 e. ( 0 [,] _pi ) -> ( C ` 0 ) = -u ( cos ` 0 ) ) |
| 125 | 120 124 | ax-mp | |- ( C ` 0 ) = -u ( cos ` 0 ) |
| 126 | cos0 | |- ( cos ` 0 ) = 1 |
|
| 127 | 126 | negeqi | |- -u ( cos ` 0 ) = -u 1 |
| 128 | 125 127 | eqtri | |- ( C ` 0 ) = -u 1 |
| 129 | 118 128 | oveq12i | |- ( ( C ` _pi ) - ( C ` 0 ) ) = ( 1 - -u 1 ) |
| 130 | 112 112 | subnegi | |- ( 1 - -u 1 ) = ( 1 + 1 ) |
| 131 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
| 132 | 130 131 | eqtri | |- ( 1 - -u 1 ) = 2 |
| 133 | 103 129 132 | 3eqtri | |- S. ( 0 (,) _pi ) ( sin ` x ) _d x = 2 |