This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of the zero function. (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg20 | ⊢ ( ∫2 ‘ ( ℝ × { 0 } ) ) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1f0 | ⊢ ( ℝ × { 0 } ) ∈ dom ∫1 | |
| 2 | reex | ⊢ ℝ ∈ V | |
| 3 | 2 | a1i | ⊢ ( ⊤ → ℝ ∈ V ) |
| 4 | i1ff | ⊢ ( ( ℝ × { 0 } ) ∈ dom ∫1 → ( ℝ × { 0 } ) : ℝ ⟶ ℝ ) | |
| 5 | 1 4 | mp1i | ⊢ ( ⊤ → ( ℝ × { 0 } ) : ℝ ⟶ ℝ ) |
| 6 | leid | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ≤ 𝑥 ) | |
| 7 | 6 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → 𝑥 ≤ 𝑥 ) |
| 8 | 3 5 7 | caofref | ⊢ ( ⊤ → ( ℝ × { 0 } ) ∘r ≤ ( ℝ × { 0 } ) ) |
| 9 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 10 | 9 | a1i | ⊢ ( ⊤ → ℝ ⊆ ℂ ) |
| 11 | 5 | ffnd | ⊢ ( ⊤ → ( ℝ × { 0 } ) Fn ℝ ) |
| 12 | 10 11 | 0pledm | ⊢ ( ⊤ → ( 0𝑝 ∘r ≤ ( ℝ × { 0 } ) ↔ ( ℝ × { 0 } ) ∘r ≤ ( ℝ × { 0 } ) ) ) |
| 13 | 8 12 | mpbird | ⊢ ( ⊤ → 0𝑝 ∘r ≤ ( ℝ × { 0 } ) ) |
| 14 | 13 | mptru | ⊢ 0𝑝 ∘r ≤ ( ℝ × { 0 } ) |
| 15 | itg2itg1 | ⊢ ( ( ( ℝ × { 0 } ) ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ ( ℝ × { 0 } ) ) → ( ∫2 ‘ ( ℝ × { 0 } ) ) = ( ∫1 ‘ ( ℝ × { 0 } ) ) ) | |
| 16 | 1 14 15 | mp2an | ⊢ ( ∫2 ‘ ( ℝ × { 0 } ) ) = ( ∫1 ‘ ( ℝ × { 0 } ) ) |
| 17 | itg10 | ⊢ ( ∫1 ‘ ( ℝ × { 0 } ) ) = 0 | |
| 18 | 16 17 | eqtri | ⊢ ( ∫2 ‘ ( ℝ × { 0 } ) ) = 0 |