This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for itg2mulc . (Contributed by Mario Carneiro, 8-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2mulc.2 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | |
| itg2mulc.3 | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) | ||
| itg2mulclem.4 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | ||
| Assertion | itg2mulclem | ⊢ ( 𝜑 → ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2mulc.2 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | |
| 2 | itg2mulc.3 | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) | |
| 3 | itg2mulclem.4 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | |
| 4 | icossicc | ⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) | |
| 5 | fss | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | |
| 6 | 1 4 5 | sylancl | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 8 | simpr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → 𝑓 ∈ dom ∫1 ) | |
| 9 | 3 | rpreccld | ⊢ ( 𝜑 → ( 1 / 𝐴 ) ∈ ℝ+ ) |
| 10 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( 1 / 𝐴 ) ∈ ℝ+ ) |
| 11 | 10 | rpred | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( 1 / 𝐴 ) ∈ ℝ ) |
| 12 | 8 11 | i1fmulc | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) ∈ dom ∫1 ) |
| 13 | itg2ub | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) ∈ dom ∫1 ∧ ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) ∘r ≤ 𝐹 ) → ( ∫1 ‘ ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) | |
| 14 | 13 | 3expia | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) ∈ dom ∫1 ) → ( ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) ∘r ≤ 𝐹 → ( ∫1 ‘ ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
| 15 | 7 12 14 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) ∘r ≤ 𝐹 → ( ∫1 ‘ ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
| 16 | i1ff | ⊢ ( 𝑓 ∈ dom ∫1 → 𝑓 : ℝ ⟶ ℝ ) | |
| 17 | 16 | adantl | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → 𝑓 : ℝ ⟶ ℝ ) |
| 18 | 17 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑓 ‘ 𝑦 ) ∈ ℝ ) |
| 19 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 20 | fss | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → 𝐹 : ℝ ⟶ ℝ ) | |
| 21 | 1 19 20 | sylancl | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 22 | 21 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → 𝐹 : ℝ ⟶ ℝ ) |
| 23 | 22 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 24 | 3 | rpred | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 25 | 24 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
| 26 | 3 | rpgt0d | ⊢ ( 𝜑 → 0 < 𝐴 ) |
| 27 | 26 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ ) → 0 < 𝐴 ) |
| 28 | ledivmul | ⊢ ( ( ( 𝑓 ‘ 𝑦 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( ( ( 𝑓 ‘ 𝑦 ) / 𝐴 ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝑓 ‘ 𝑦 ) ≤ ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 29 | 18 23 25 27 28 | syl112anc | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝑓 ‘ 𝑦 ) / 𝐴 ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝑓 ‘ 𝑦 ) ≤ ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 30 | 18 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑓 ‘ 𝑦 ) ∈ ℂ ) |
| 31 | 25 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
| 32 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → 𝐴 ∈ ℝ+ ) |
| 33 | 32 | rpne0d | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → 𝐴 ≠ 0 ) |
| 34 | 33 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ ) → 𝐴 ≠ 0 ) |
| 35 | 30 31 34 | divrec2d | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑦 ) / 𝐴 ) = ( ( 1 / 𝐴 ) · ( 𝑓 ‘ 𝑦 ) ) ) |
| 36 | 35 | breq1d | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝑓 ‘ 𝑦 ) / 𝐴 ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ ( ( 1 / 𝐴 ) · ( 𝑓 ‘ 𝑦 ) ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 37 | 29 36 | bitr3d | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑦 ) ≤ ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 1 / 𝐴 ) · ( 𝑓 ‘ 𝑦 ) ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 38 | 37 | ralbidva | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ∀ 𝑦 ∈ ℝ ( 𝑓 ‘ 𝑦 ) ≤ ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ℝ ( ( 1 / 𝐴 ) · ( 𝑓 ‘ 𝑦 ) ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 39 | reex | ⊢ ℝ ∈ V | |
| 40 | 39 | a1i | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ℝ ∈ V ) |
| 41 | ovexd | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ ) → ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ∈ V ) | |
| 42 | 17 | feqmptd | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → 𝑓 = ( 𝑦 ∈ ℝ ↦ ( 𝑓 ‘ 𝑦 ) ) ) |
| 43 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ ) → 𝐴 ∈ ℝ+ ) |
| 44 | fconstmpt | ⊢ ( ℝ × { 𝐴 } ) = ( 𝑦 ∈ ℝ ↦ 𝐴 ) | |
| 45 | 44 | a1i | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ℝ × { 𝐴 } ) = ( 𝑦 ∈ ℝ ↦ 𝐴 ) ) |
| 46 | 1 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 47 | 46 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 48 | 40 43 23 45 47 | offval2 | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) = ( 𝑦 ∈ ℝ ↦ ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 49 | 40 18 41 42 48 | ofrfval2 | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( 𝑓 ∘r ≤ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ↔ ∀ 𝑦 ∈ ℝ ( 𝑓 ‘ 𝑦 ) ≤ ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 50 | ovexd | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ ) → ( ( 1 / 𝐴 ) · ( 𝑓 ‘ 𝑦 ) ) ∈ V ) | |
| 51 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ ) → ( 1 / 𝐴 ) ∈ ℝ+ ) |
| 52 | fconstmpt | ⊢ ( ℝ × { ( 1 / 𝐴 ) } ) = ( 𝑦 ∈ ℝ ↦ ( 1 / 𝐴 ) ) | |
| 53 | 52 | a1i | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ℝ × { ( 1 / 𝐴 ) } ) = ( 𝑦 ∈ ℝ ↦ ( 1 / 𝐴 ) ) ) |
| 54 | 40 51 18 53 42 | offval2 | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) = ( 𝑦 ∈ ℝ ↦ ( ( 1 / 𝐴 ) · ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 55 | 40 50 23 54 47 | ofrfval2 | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) ∘r ≤ 𝐹 ↔ ∀ 𝑦 ∈ ℝ ( ( 1 / 𝐴 ) · ( 𝑓 ‘ 𝑦 ) ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 56 | 38 49 55 | 3bitr4d | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( 𝑓 ∘r ≤ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ↔ ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) ∘r ≤ 𝐹 ) ) |
| 57 | 8 11 | itg1mulc | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ∫1 ‘ ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) ) = ( ( 1 / 𝐴 ) · ( ∫1 ‘ 𝑓 ) ) ) |
| 58 | itg1cl | ⊢ ( 𝑓 ∈ dom ∫1 → ( ∫1 ‘ 𝑓 ) ∈ ℝ ) | |
| 59 | 58 | adantl | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ∫1 ‘ 𝑓 ) ∈ ℝ ) |
| 60 | 59 | recnd | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ∫1 ‘ 𝑓 ) ∈ ℂ ) |
| 61 | 24 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → 𝐴 ∈ ℝ ) |
| 62 | 61 | recnd | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → 𝐴 ∈ ℂ ) |
| 63 | 60 62 33 | divrec2d | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ( ∫1 ‘ 𝑓 ) / 𝐴 ) = ( ( 1 / 𝐴 ) · ( ∫1 ‘ 𝑓 ) ) ) |
| 64 | 57 63 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ∫1 ‘ ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) ) = ( ( ∫1 ‘ 𝑓 ) / 𝐴 ) ) |
| 65 | 64 | breq1d | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ( ∫1 ‘ ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) ) ≤ ( ∫2 ‘ 𝐹 ) ↔ ( ( ∫1 ‘ 𝑓 ) / 𝐴 ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
| 66 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
| 67 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → 0 < 𝐴 ) |
| 68 | ledivmul | ⊢ ( ( ( ∫1 ‘ 𝑓 ) ∈ ℝ ∧ ( ∫2 ‘ 𝐹 ) ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( ( ( ∫1 ‘ 𝑓 ) / 𝐴 ) ≤ ( ∫2 ‘ 𝐹 ) ↔ ( ∫1 ‘ 𝑓 ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ) ) | |
| 69 | 59 66 61 67 68 | syl112anc | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ( ( ∫1 ‘ 𝑓 ) / 𝐴 ) ≤ ( ∫2 ‘ 𝐹 ) ↔ ( ∫1 ‘ 𝑓 ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ) ) |
| 70 | 65 69 | bitr2d | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ( ∫1 ‘ 𝑓 ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ↔ ( ∫1 ‘ ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
| 71 | 15 56 70 | 3imtr4d | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( 𝑓 ∘r ≤ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) → ( ∫1 ‘ 𝑓 ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ) ) |
| 72 | 71 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) → ( ∫1 ‘ 𝑓 ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ) ) |
| 73 | ge0mulcl | ⊢ ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 · 𝑦 ) ∈ ( 0 [,) +∞ ) ) | |
| 74 | 73 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ) → ( 𝑥 · 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
| 75 | fconstg | ⊢ ( 𝐴 ∈ ℝ+ → ( ℝ × { 𝐴 } ) : ℝ ⟶ { 𝐴 } ) | |
| 76 | 3 75 | syl | ⊢ ( 𝜑 → ( ℝ × { 𝐴 } ) : ℝ ⟶ { 𝐴 } ) |
| 77 | rpre | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) | |
| 78 | rpge0 | ⊢ ( 𝐴 ∈ ℝ+ → 0 ≤ 𝐴 ) | |
| 79 | elrege0 | ⊢ ( 𝐴 ∈ ( 0 [,) +∞ ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) | |
| 80 | 77 78 79 | sylanbrc | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ( 0 [,) +∞ ) ) |
| 81 | 3 80 | syl | ⊢ ( 𝜑 → 𝐴 ∈ ( 0 [,) +∞ ) ) |
| 82 | 81 | snssd | ⊢ ( 𝜑 → { 𝐴 } ⊆ ( 0 [,) +∞ ) ) |
| 83 | 76 82 | fssd | ⊢ ( 𝜑 → ( ℝ × { 𝐴 } ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 84 | 39 | a1i | ⊢ ( 𝜑 → ℝ ∈ V ) |
| 85 | inidm | ⊢ ( ℝ ∩ ℝ ) = ℝ | |
| 86 | 74 83 1 84 84 85 | off | ⊢ ( 𝜑 → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 87 | fss | ⊢ ( ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | |
| 88 | 86 4 87 | sylancl | ⊢ ( 𝜑 → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 89 | 24 2 | remulcld | ⊢ ( 𝜑 → ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ∈ ℝ ) |
| 90 | 89 | rexrd | ⊢ ( 𝜑 → ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ∈ ℝ* ) |
| 91 | itg2leub | ⊢ ( ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ∈ ℝ* ) → ( ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ↔ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) → ( ∫1 ‘ 𝑓 ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ) ) ) | |
| 92 | 88 90 91 | syl2anc | ⊢ ( 𝜑 → ( ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ↔ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) → ( ∫1 ‘ 𝑓 ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ) ) ) |
| 93 | 72 92 | mpbird | ⊢ ( 𝜑 → ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ) |