This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer an associative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caofref.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| caofref.2 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | ||
| caofcom.3 | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝑆 ) | ||
| caofass.4 | ⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝑆 ) | ||
| caofass.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 𝑅 𝑦 ) 𝑇 𝑧 ) = ( 𝑥 𝑂 ( 𝑦 𝑃 𝑧 ) ) ) | ||
| Assertion | caofass | ⊢ ( 𝜑 → ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘f 𝑇 𝐻 ) = ( 𝐹 ∘f 𝑂 ( 𝐺 ∘f 𝑃 𝐻 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofref.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | caofref.2 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | |
| 3 | caofcom.3 | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝑆 ) | |
| 4 | caofass.4 | ⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝑆 ) | |
| 5 | caofass.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 𝑅 𝑦 ) 𝑇 𝑧 ) = ( 𝑥 𝑂 ( 𝑦 𝑃 𝑧 ) ) ) | |
| 6 | 5 | ralrimivvva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 𝑅 𝑦 ) 𝑇 𝑧 ) = ( 𝑥 𝑂 ( 𝑦 𝑃 𝑧 ) ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 𝑅 𝑦 ) 𝑇 𝑧 ) = ( 𝑥 𝑂 ( 𝑦 𝑃 𝑧 ) ) ) |
| 8 | 2 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝑆 ) |
| 9 | 3 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑤 ) ∈ 𝑆 ) |
| 10 | 4 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑤 ) ∈ 𝑆 ) |
| 11 | oveq1 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( 𝑥 𝑅 𝑦 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ) ) | |
| 12 | 11 | oveq1d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( ( 𝑥 𝑅 𝑦 ) 𝑇 𝑧 ) = ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ) 𝑇 𝑧 ) ) |
| 13 | oveq1 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( 𝑥 𝑂 ( 𝑦 𝑃 𝑧 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( 𝑦 𝑃 𝑧 ) ) ) | |
| 14 | 12 13 | eqeq12d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( ( ( 𝑥 𝑅 𝑦 ) 𝑇 𝑧 ) = ( 𝑥 𝑂 ( 𝑦 𝑃 𝑧 ) ) ↔ ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ) 𝑇 𝑧 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( 𝑦 𝑃 𝑧 ) ) ) ) |
| 15 | oveq2 | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) ) | |
| 16 | 15 | oveq1d | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑤 ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ) 𝑇 𝑧 ) = ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 𝑧 ) ) |
| 17 | oveq1 | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑤 ) → ( 𝑦 𝑃 𝑧 ) = ( ( 𝐺 ‘ 𝑤 ) 𝑃 𝑧 ) ) | |
| 18 | 17 | oveq2d | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( 𝑦 𝑃 𝑧 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 𝑧 ) ) ) |
| 19 | 16 18 | eqeq12d | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑤 ) → ( ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ) 𝑇 𝑧 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( 𝑦 𝑃 𝑧 ) ) ↔ ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 𝑧 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 𝑧 ) ) ) ) |
| 20 | oveq2 | ⊢ ( 𝑧 = ( 𝐻 ‘ 𝑤 ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 𝑧 ) = ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ) | |
| 21 | oveq2 | ⊢ ( 𝑧 = ( 𝐻 ‘ 𝑤 ) → ( ( 𝐺 ‘ 𝑤 ) 𝑃 𝑧 ) = ( ( 𝐺 ‘ 𝑤 ) 𝑃 ( 𝐻 ‘ 𝑤 ) ) ) | |
| 22 | 21 | oveq2d | ⊢ ( 𝑧 = ( 𝐻 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 𝑧 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 ( 𝐻 ‘ 𝑤 ) ) ) ) |
| 23 | 20 22 | eqeq12d | ⊢ ( 𝑧 = ( 𝐻 ‘ 𝑤 ) → ( ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 𝑧 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 𝑧 ) ) ↔ ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 ( 𝐻 ‘ 𝑤 ) ) ) ) ) |
| 24 | 14 19 23 | rspc3v | ⊢ ( ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑆 ∧ ( 𝐺 ‘ 𝑤 ) ∈ 𝑆 ∧ ( 𝐻 ‘ 𝑤 ) ∈ 𝑆 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 𝑅 𝑦 ) 𝑇 𝑧 ) = ( 𝑥 𝑂 ( 𝑦 𝑃 𝑧 ) ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 ( 𝐻 ‘ 𝑤 ) ) ) ) ) |
| 25 | 8 9 10 24 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 𝑅 𝑦 ) 𝑇 𝑧 ) = ( 𝑥 𝑂 ( 𝑦 𝑃 𝑧 ) ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 ( 𝐻 ‘ 𝑤 ) ) ) ) ) |
| 26 | 7 25 | mpd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 ( 𝐻 ‘ 𝑤 ) ) ) ) |
| 27 | 26 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝐴 ↦ ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 ( 𝐻 ‘ 𝑤 ) ) ) ) ) |
| 28 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) ∈ V ) | |
| 29 | 2 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑤 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑤 ) ) ) |
| 30 | 3 | feqmptd | ⊢ ( 𝜑 → 𝐺 = ( 𝑤 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑤 ) ) ) |
| 31 | 1 8 9 29 30 | offval2 | ⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 32 | 4 | feqmptd | ⊢ ( 𝜑 → 𝐻 = ( 𝑤 ∈ 𝐴 ↦ ( 𝐻 ‘ 𝑤 ) ) ) |
| 33 | 1 28 10 31 32 | offval2 | ⊢ ( 𝜑 → ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘f 𝑇 𝐻 ) = ( 𝑤 ∈ 𝐴 ↦ ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ) ) |
| 34 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑤 ) 𝑃 ( 𝐻 ‘ 𝑤 ) ) ∈ V ) | |
| 35 | 1 9 10 30 32 | offval2 | ⊢ ( 𝜑 → ( 𝐺 ∘f 𝑃 𝐻 ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐺 ‘ 𝑤 ) 𝑃 ( 𝐻 ‘ 𝑤 ) ) ) ) |
| 36 | 1 8 34 29 35 | offval2 | ⊢ ( 𝜑 → ( 𝐹 ∘f 𝑂 ( 𝐺 ∘f 𝑃 𝐻 ) ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 ( 𝐻 ‘ 𝑤 ) ) ) ) ) |
| 37 | 27 33 36 | 3eqtr4d | ⊢ ( 𝜑 → ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘f 𝑇 𝐻 ) = ( 𝐹 ∘f 𝑂 ( 𝐺 ∘f 𝑃 𝐻 ) ) ) |