This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A df-neg -like equation for inverse in terms of group subtraction. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpsubcl.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| grpinvsub.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| grpinvval2.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | grpinvval2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) = ( 0 − 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpsubcl.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 3 | grpinvsub.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 4 | grpinvval2.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 5 | 1 4 | grpidcl | ⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝐵 ) |
| 6 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 7 | 1 6 3 2 | grpsubval | ⊢ ( ( 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 0 − 𝑋 ) = ( 0 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) ) |
| 8 | 5 7 | sylan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0 − 𝑋 ) = ( 0 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) ) |
| 9 | 1 3 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
| 10 | 1 6 4 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) → ( 0 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| 11 | 9 10 | syldan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| 12 | 8 11 | eqtr2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) = ( 0 − 𝑋 ) ) |