This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmpt21.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| cnmpt21.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| cnmpt21.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) | ||
| cnmpt2t.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑀 ) ) | ||
| cnmpt22f.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝑁 ) ) | ||
| Assertion | cnmpt22f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐴 𝐹 𝐵 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt21.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | cnmpt21.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 3 | cnmpt21.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) | |
| 4 | cnmpt2t.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑀 ) ) | |
| 5 | cnmpt22f.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝑁 ) ) | |
| 6 | cntop2 | ⊢ ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) → 𝐿 ∈ Top ) | |
| 7 | 3 6 | syl | ⊢ ( 𝜑 → 𝐿 ∈ Top ) |
| 8 | toptopon2 | ⊢ ( 𝐿 ∈ Top ↔ 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) | |
| 9 | 7 8 | sylib | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) |
| 10 | cntop2 | ⊢ ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑀 ) → 𝑀 ∈ Top ) | |
| 11 | 4 10 | syl | ⊢ ( 𝜑 → 𝑀 ∈ Top ) |
| 12 | toptopon2 | ⊢ ( 𝑀 ∈ Top ↔ 𝑀 ∈ ( TopOn ‘ ∪ 𝑀 ) ) | |
| 13 | 11 12 | sylib | ⊢ ( 𝜑 → 𝑀 ∈ ( TopOn ‘ ∪ 𝑀 ) ) |
| 14 | txtopon | ⊢ ( ( 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ∧ 𝑀 ∈ ( TopOn ‘ ∪ 𝑀 ) ) → ( 𝐿 ×t 𝑀 ) ∈ ( TopOn ‘ ( ∪ 𝐿 × ∪ 𝑀 ) ) ) | |
| 15 | 9 13 14 | syl2anc | ⊢ ( 𝜑 → ( 𝐿 ×t 𝑀 ) ∈ ( TopOn ‘ ( ∪ 𝐿 × ∪ 𝑀 ) ) ) |
| 16 | cntop2 | ⊢ ( 𝐹 ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝑁 ) → 𝑁 ∈ Top ) | |
| 17 | 5 16 | syl | ⊢ ( 𝜑 → 𝑁 ∈ Top ) |
| 18 | toptopon2 | ⊢ ( 𝑁 ∈ Top ↔ 𝑁 ∈ ( TopOn ‘ ∪ 𝑁 ) ) | |
| 19 | 17 18 | sylib | ⊢ ( 𝜑 → 𝑁 ∈ ( TopOn ‘ ∪ 𝑁 ) ) |
| 20 | cnf2 | ⊢ ( ( ( 𝐿 ×t 𝑀 ) ∈ ( TopOn ‘ ( ∪ 𝐿 × ∪ 𝑀 ) ) ∧ 𝑁 ∈ ( TopOn ‘ ∪ 𝑁 ) ∧ 𝐹 ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝑁 ) ) → 𝐹 : ( ∪ 𝐿 × ∪ 𝑀 ) ⟶ ∪ 𝑁 ) | |
| 21 | 15 19 5 20 | syl3anc | ⊢ ( 𝜑 → 𝐹 : ( ∪ 𝐿 × ∪ 𝑀 ) ⟶ ∪ 𝑁 ) |
| 22 | 21 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ( ∪ 𝐿 × ∪ 𝑀 ) ) |
| 23 | fnov | ⊢ ( 𝐹 Fn ( ∪ 𝐿 × ∪ 𝑀 ) ↔ 𝐹 = ( 𝑧 ∈ ∪ 𝐿 , 𝑤 ∈ ∪ 𝑀 ↦ ( 𝑧 𝐹 𝑤 ) ) ) | |
| 24 | 22 23 | sylib | ⊢ ( 𝜑 → 𝐹 = ( 𝑧 ∈ ∪ 𝐿 , 𝑤 ∈ ∪ 𝑀 ↦ ( 𝑧 𝐹 𝑤 ) ) ) |
| 25 | 24 5 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑧 ∈ ∪ 𝐿 , 𝑤 ∈ ∪ 𝑀 ↦ ( 𝑧 𝐹 𝑤 ) ) ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝑁 ) ) |
| 26 | oveq12 | ⊢ ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) → ( 𝑧 𝐹 𝑤 ) = ( 𝐴 𝐹 𝐵 ) ) | |
| 27 | 1 2 3 4 9 13 25 26 | cnmpt22 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐴 𝐹 𝐵 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑁 ) ) |