This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction of an inverse. (Contributed by NM, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpsubinv.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grpsubinv.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| grpsubinv.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| grpsubinv.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| grpsubinv.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| grpsubinv.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | grpsubinv | ⊢ ( 𝜑 → ( 𝑋 − ( 𝑁 ‘ 𝑌 ) ) = ( 𝑋 + 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpsubinv.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grpsubinv.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | grpsubinv.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 5 | grpsubinv.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 6 | grpsubinv.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 7 | grpsubinv.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 8 | 1 4 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ) |
| 9 | 5 7 8 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ) |
| 10 | 1 2 4 3 | grpsubval | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ) → ( 𝑋 − ( 𝑁 ‘ 𝑌 ) ) = ( 𝑋 + ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) ) ) |
| 11 | 6 9 10 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 − ( 𝑁 ‘ 𝑌 ) ) = ( 𝑋 + ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) ) ) |
| 12 | 1 4 | grpinvinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) = 𝑌 ) |
| 13 | 5 7 12 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) = 𝑌 ) |
| 14 | 13 | oveq2d | ⊢ ( 𝜑 → ( 𝑋 + ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) ) = ( 𝑋 + 𝑌 ) ) |
| 15 | 11 14 | eqtrd | ⊢ ( 𝜑 → ( 𝑋 − ( 𝑁 ‘ 𝑌 ) ) = ( 𝑋 + 𝑌 ) ) |