This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a topological monoid, the n-times group multiple function is continuous. (Contributed by Mario Carneiro, 19-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgpmulg.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| tgpmulg.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| tgpmulg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| Assertion | tmdmulg | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑁 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑁 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgpmulg.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 2 | tgpmulg.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | tgpmulg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 4 | oveq1 | ⊢ ( 𝑛 = 0 → ( 𝑛 · 𝑥 ) = ( 0 · 𝑥 ) ) | |
| 5 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 6 | 3 5 2 | mulg0 | ⊢ ( 𝑥 ∈ 𝐵 → ( 0 · 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 7 | 4 6 | sylan9eq | ⊢ ( ( 𝑛 = 0 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑛 · 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 8 | 7 | mpteq2dva | ⊢ ( 𝑛 = 0 → ( 𝑥 ∈ 𝐵 ↦ ( 𝑛 · 𝑥 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 0g ‘ 𝐺 ) ) ) |
| 9 | 8 | eleq1d | ⊢ ( 𝑛 = 0 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑛 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ↔ ( 𝑥 ∈ 𝐵 ↦ ( 0g ‘ 𝐺 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) ) |
| 10 | oveq1 | ⊢ ( 𝑛 = 𝑘 → ( 𝑛 · 𝑥 ) = ( 𝑘 · 𝑥 ) ) | |
| 11 | 10 | mpteq2dv | ⊢ ( 𝑛 = 𝑘 → ( 𝑥 ∈ 𝐵 ↦ ( 𝑛 · 𝑥 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑘 · 𝑥 ) ) ) |
| 12 | 11 | eleq1d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑛 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ↔ ( 𝑥 ∈ 𝐵 ↦ ( 𝑘 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) ) |
| 13 | oveq1 | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑛 · 𝑥 ) = ( ( 𝑘 + 1 ) · 𝑥 ) ) | |
| 14 | 13 | mpteq2dv | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑛 · 𝑥 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( ( 𝑘 + 1 ) · 𝑥 ) ) ) |
| 15 | 14 | eleq1d | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑛 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ↔ ( 𝑥 ∈ 𝐵 ↦ ( ( 𝑘 + 1 ) · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) ) |
| 16 | oveq1 | ⊢ ( 𝑛 = 𝑁 → ( 𝑛 · 𝑥 ) = ( 𝑁 · 𝑥 ) ) | |
| 17 | 16 | mpteq2dv | ⊢ ( 𝑛 = 𝑁 → ( 𝑥 ∈ 𝐵 ↦ ( 𝑛 · 𝑥 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑁 · 𝑥 ) ) ) |
| 18 | 17 | eleq1d | ⊢ ( 𝑛 = 𝑁 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑛 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ↔ ( 𝑥 ∈ 𝐵 ↦ ( 𝑁 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) ) |
| 19 | 1 3 | tmdtopon | ⊢ ( 𝐺 ∈ TopMnd → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 20 | tmdmnd | ⊢ ( 𝐺 ∈ TopMnd → 𝐺 ∈ Mnd ) | |
| 21 | 3 5 | mndidcl | ⊢ ( 𝐺 ∈ Mnd → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 22 | 20 21 | syl | ⊢ ( 𝐺 ∈ TopMnd → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 23 | 19 19 22 | cnmptc | ⊢ ( 𝐺 ∈ TopMnd → ( 𝑥 ∈ 𝐵 ↦ ( 0g ‘ 𝐺 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 24 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑘 + 1 ) · 𝑥 ) = ( ( 𝑘 + 1 ) · 𝑦 ) ) | |
| 25 | 24 | cbvmptv | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( ( 𝑘 + 1 ) · 𝑥 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( ( 𝑘 + 1 ) · 𝑦 ) ) |
| 26 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 27 | 3 2 26 | mulgnn0p1 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑘 ∈ ℕ0 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑘 + 1 ) · 𝑦 ) = ( ( 𝑘 · 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 28 | 20 27 | syl3an1 | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑘 + 1 ) · 𝑦 ) = ( ( 𝑘 · 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 29 | 28 | ad4ant124 | ⊢ ( ( ( ( 𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑥 ∈ 𝐵 ↦ ( 𝑘 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑘 + 1 ) · 𝑦 ) = ( ( 𝑘 · 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 30 | 29 | mpteq2dva | ⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑥 ∈ 𝐵 ↦ ( 𝑘 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑦 ∈ 𝐵 ↦ ( ( 𝑘 + 1 ) · 𝑦 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( ( 𝑘 · 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 31 | 25 30 | eqtrid | ⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑥 ∈ 𝐵 ↦ ( 𝑘 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑥 ∈ 𝐵 ↦ ( ( 𝑘 + 1 ) · 𝑥 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( ( 𝑘 · 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 32 | simpll | ⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑥 ∈ 𝐵 ↦ ( 𝑘 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → 𝐺 ∈ TopMnd ) | |
| 33 | 32 19 | syl | ⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑥 ∈ 𝐵 ↦ ( 𝑘 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 34 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑘 · 𝑥 ) = ( 𝑘 · 𝑦 ) ) | |
| 35 | 34 | cbvmptv | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝑘 · 𝑥 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 𝑘 · 𝑦 ) ) |
| 36 | simpr | ⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑥 ∈ 𝐵 ↦ ( 𝑘 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑘 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) | |
| 37 | 35 36 | eqeltrrid | ⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑥 ∈ 𝐵 ↦ ( 𝑘 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑦 ∈ 𝐵 ↦ ( 𝑘 · 𝑦 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 38 | 33 | cnmptid | ⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑥 ∈ 𝐵 ↦ ( 𝑘 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑦 ∈ 𝐵 ↦ 𝑦 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 39 | 1 26 32 33 37 38 | cnmpt1plusg | ⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑥 ∈ 𝐵 ↦ ( 𝑘 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑦 ∈ 𝐵 ↦ ( ( 𝑘 · 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 40 | 31 39 | eqeltrd | ⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑥 ∈ 𝐵 ↦ ( 𝑘 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑥 ∈ 𝐵 ↦ ( ( 𝑘 + 1 ) · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 41 | 9 12 15 18 23 40 | nn0indd | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑁 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑁 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |