This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmpt21.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| cnmpt21.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| cnmpt21.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) | ||
| cnmpt21f.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐿 Cn 𝑀 ) ) | ||
| Assertion | cnmpt21f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐹 ‘ 𝐴 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt21.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | cnmpt21.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 3 | cnmpt21.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) | |
| 4 | cnmpt21f.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐿 Cn 𝑀 ) ) | |
| 5 | cntop1 | ⊢ ( 𝐹 ∈ ( 𝐿 Cn 𝑀 ) → 𝐿 ∈ Top ) | |
| 6 | 4 5 | syl | ⊢ ( 𝜑 → 𝐿 ∈ Top ) |
| 7 | toptopon2 | ⊢ ( 𝐿 ∈ Top ↔ 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) | |
| 8 | 6 7 | sylib | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) |
| 9 | eqid | ⊢ ∪ 𝐿 = ∪ 𝐿 | |
| 10 | eqid | ⊢ ∪ 𝑀 = ∪ 𝑀 | |
| 11 | 9 10 | cnf | ⊢ ( 𝐹 ∈ ( 𝐿 Cn 𝑀 ) → 𝐹 : ∪ 𝐿 ⟶ ∪ 𝑀 ) |
| 12 | 4 11 | syl | ⊢ ( 𝜑 → 𝐹 : ∪ 𝐿 ⟶ ∪ 𝑀 ) |
| 13 | 12 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑧 ∈ ∪ 𝐿 ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 14 | 13 4 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑧 ∈ ∪ 𝐿 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐿 Cn 𝑀 ) ) |
| 15 | fveq2 | ⊢ ( 𝑧 = 𝐴 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 16 | 1 2 3 8 14 15 | cnmpt21 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐹 ‘ 𝐴 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑀 ) ) |