This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One need only check prime divisors of P up to sqrt P in order to ensure primality. (Contributed by Mario Carneiro, 18-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isprm5 | ⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℙ ( ( 𝑧 ↑ 2 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprm4 | ⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) ) | |
| 2 | prmuz2 | ⊢ ( 𝑧 ∈ ℙ → 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 3 | 2 | a1i | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑧 ∈ ℙ → 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 4 | eluz2gt1 | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑃 ) | |
| 5 | eluzelre | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℝ ) | |
| 6 | eluz2nn | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℕ ) | |
| 7 | 6 | nngt0d | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 0 < 𝑃 ) |
| 8 | ltmulgt11 | ⊢ ( ( 𝑃 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ 0 < 𝑃 ) → ( 1 < 𝑃 ↔ 𝑃 < ( 𝑃 · 𝑃 ) ) ) | |
| 9 | 5 5 7 8 | syl3anc | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( 1 < 𝑃 ↔ 𝑃 < ( 𝑃 · 𝑃 ) ) ) |
| 10 | 4 9 | mpbid | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 < ( 𝑃 · 𝑃 ) ) |
| 11 | 5 5 | remulcld | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑃 · 𝑃 ) ∈ ℝ ) |
| 12 | 5 11 | ltnled | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑃 < ( 𝑃 · 𝑃 ) ↔ ¬ ( 𝑃 · 𝑃 ) ≤ 𝑃 ) ) |
| 13 | 10 12 | mpbid | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ¬ ( 𝑃 · 𝑃 ) ≤ 𝑃 ) |
| 14 | oveq12 | ⊢ ( ( 𝑧 = 𝑃 ∧ 𝑧 = 𝑃 ) → ( 𝑧 · 𝑧 ) = ( 𝑃 · 𝑃 ) ) | |
| 15 | 14 | anidms | ⊢ ( 𝑧 = 𝑃 → ( 𝑧 · 𝑧 ) = ( 𝑃 · 𝑃 ) ) |
| 16 | 15 | breq1d | ⊢ ( 𝑧 = 𝑃 → ( ( 𝑧 · 𝑧 ) ≤ 𝑃 ↔ ( 𝑃 · 𝑃 ) ≤ 𝑃 ) ) |
| 17 | 16 | notbid | ⊢ ( 𝑧 = 𝑃 → ( ¬ ( 𝑧 · 𝑧 ) ≤ 𝑃 ↔ ¬ ( 𝑃 · 𝑃 ) ≤ 𝑃 ) ) |
| 18 | 13 17 | syl5ibrcom | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑧 = 𝑃 → ¬ ( 𝑧 · 𝑧 ) ≤ 𝑃 ) ) |
| 19 | 18 | imim2d | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) → ( 𝑧 ∥ 𝑃 → ¬ ( 𝑧 · 𝑧 ) ≤ 𝑃 ) ) ) |
| 20 | con2 | ⊢ ( ( 𝑧 ∥ 𝑃 → ¬ ( 𝑧 · 𝑧 ) ≤ 𝑃 ) → ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) | |
| 21 | 19 20 | syl6 | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) → ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ) |
| 22 | 3 21 | imim12d | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) → ( 𝑧 ∈ ℙ → ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ) ) |
| 23 | 22 | ralimdv2 | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) → ∀ 𝑧 ∈ ℙ ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ) |
| 24 | annim | ⊢ ( ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ↔ ¬ ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) | |
| 25 | oveq12 | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑧 ) → ( 𝑥 · 𝑥 ) = ( 𝑧 · 𝑧 ) ) | |
| 26 | 25 | anidms | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 · 𝑥 ) = ( 𝑧 · 𝑧 ) ) |
| 27 | 26 | breq1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ↔ ( 𝑧 · 𝑧 ) ≤ 𝑃 ) ) |
| 28 | breq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∥ 𝑃 ↔ 𝑧 ∥ 𝑃 ) ) | |
| 29 | 27 28 | anbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ↔ ( ( 𝑧 · 𝑧 ) ≤ 𝑃 ∧ 𝑧 ∥ 𝑃 ) ) ) |
| 30 | 29 | rspcev | ⊢ ( ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) ∧ ( ( 𝑧 · 𝑧 ) ≤ 𝑃 ∧ 𝑧 ∥ 𝑃 ) ) → ∃ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) |
| 31 | 30 | ancom2s | ⊢ ( ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∥ 𝑃 ∧ ( 𝑧 · 𝑧 ) ≤ 𝑃 ) ) → ∃ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) |
| 32 | 31 | expr | ⊢ ( ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∥ 𝑃 ) → ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ∃ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ) |
| 33 | 32 | ad2ant2lr | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ∃ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ) |
| 34 | simprl | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑧 ∥ 𝑃 ) | |
| 35 | eluzelz | ⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → 𝑧 ∈ ℤ ) | |
| 36 | 35 | ad2antlr | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑧 ∈ ℤ ) |
| 37 | eluz2nn | ⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → 𝑧 ∈ ℕ ) | |
| 38 | 37 | ad2antlr | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑧 ∈ ℕ ) |
| 39 | 38 | nnne0d | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑧 ≠ 0 ) |
| 40 | eluzelz | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℤ ) | |
| 41 | 40 | ad2antrr | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑃 ∈ ℤ ) |
| 42 | dvdsval2 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑧 ≠ 0 ∧ 𝑃 ∈ ℤ ) → ( 𝑧 ∥ 𝑃 ↔ ( 𝑃 / 𝑧 ) ∈ ℤ ) ) | |
| 43 | 36 39 41 42 | syl3anc | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑧 ∥ 𝑃 ↔ ( 𝑃 / 𝑧 ) ∈ ℤ ) ) |
| 44 | 34 43 | mpbid | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑃 / 𝑧 ) ∈ ℤ ) |
| 45 | eluzelre | ⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → 𝑧 ∈ ℝ ) | |
| 46 | 45 | ad2antlr | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑧 ∈ ℝ ) |
| 47 | 46 | recnd | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑧 ∈ ℂ ) |
| 48 | 47 | mullidd | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 1 · 𝑧 ) = 𝑧 ) |
| 49 | 5 | ad2antrr | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑃 ∈ ℝ ) |
| 50 | 6 | ad2antrr | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑃 ∈ ℕ ) |
| 51 | dvdsle | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ ) → ( 𝑧 ∥ 𝑃 → 𝑧 ≤ 𝑃 ) ) | |
| 52 | 51 | imp | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ ) ∧ 𝑧 ∥ 𝑃 ) → 𝑧 ≤ 𝑃 ) |
| 53 | 36 50 34 52 | syl21anc | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑧 ≤ 𝑃 ) |
| 54 | simprr | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ¬ 𝑧 = 𝑃 ) | |
| 55 | 54 | neqned | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑧 ≠ 𝑃 ) |
| 56 | 55 | necomd | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑃 ≠ 𝑧 ) |
| 57 | 46 49 53 56 | leneltd | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑧 < 𝑃 ) |
| 58 | 48 57 | eqbrtrd | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 1 · 𝑧 ) < 𝑃 ) |
| 59 | 1red | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 1 ∈ ℝ ) | |
| 60 | 41 | zred | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑃 ∈ ℝ ) |
| 61 | nnre | ⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℝ ) | |
| 62 | nngt0 | ⊢ ( 𝑧 ∈ ℕ → 0 < 𝑧 ) | |
| 63 | 61 62 | jca | ⊢ ( 𝑧 ∈ ℕ → ( 𝑧 ∈ ℝ ∧ 0 < 𝑧 ) ) |
| 64 | 38 63 | syl | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑧 ∈ ℝ ∧ 0 < 𝑧 ) ) |
| 65 | ltmuldiv | ⊢ ( ( 1 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ ( 𝑧 ∈ ℝ ∧ 0 < 𝑧 ) ) → ( ( 1 · 𝑧 ) < 𝑃 ↔ 1 < ( 𝑃 / 𝑧 ) ) ) | |
| 66 | 59 60 64 65 | syl3anc | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( ( 1 · 𝑧 ) < 𝑃 ↔ 1 < ( 𝑃 / 𝑧 ) ) ) |
| 67 | 58 66 | mpbid | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 1 < ( 𝑃 / 𝑧 ) ) |
| 68 | eluz2b1 | ⊢ ( ( 𝑃 / 𝑧 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( 𝑃 / 𝑧 ) ∈ ℤ ∧ 1 < ( 𝑃 / 𝑧 ) ) ) | |
| 69 | 44 67 68 | sylanbrc | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑃 / 𝑧 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 70 | 46 46 | remulcld | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑧 · 𝑧 ) ∈ ℝ ) |
| 71 | 38 38 | nnmulcld | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑧 · 𝑧 ) ∈ ℕ ) |
| 72 | nnrp | ⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℝ+ ) | |
| 73 | nnrp | ⊢ ( ( 𝑧 · 𝑧 ) ∈ ℕ → ( 𝑧 · 𝑧 ) ∈ ℝ+ ) | |
| 74 | rpdivcl | ⊢ ( ( 𝑃 ∈ ℝ+ ∧ ( 𝑧 · 𝑧 ) ∈ ℝ+ ) → ( 𝑃 / ( 𝑧 · 𝑧 ) ) ∈ ℝ+ ) | |
| 75 | 72 73 74 | syl2an | ⊢ ( ( 𝑃 ∈ ℕ ∧ ( 𝑧 · 𝑧 ) ∈ ℕ ) → ( 𝑃 / ( 𝑧 · 𝑧 ) ) ∈ ℝ+ ) |
| 76 | 50 71 75 | syl2anc | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑃 / ( 𝑧 · 𝑧 ) ) ∈ ℝ+ ) |
| 77 | 49 70 76 | lemul1d | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑃 ≤ ( 𝑧 · 𝑧 ) ↔ ( 𝑃 · ( 𝑃 / ( 𝑧 · 𝑧 ) ) ) ≤ ( ( 𝑧 · 𝑧 ) · ( 𝑃 / ( 𝑧 · 𝑧 ) ) ) ) ) |
| 78 | 49 | recnd | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑃 ∈ ℂ ) |
| 79 | 78 47 78 47 39 39 | divmuldivd | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( ( 𝑃 / 𝑧 ) · ( 𝑃 / 𝑧 ) ) = ( ( 𝑃 · 𝑃 ) / ( 𝑧 · 𝑧 ) ) ) |
| 80 | 71 | nncnd | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑧 · 𝑧 ) ∈ ℂ ) |
| 81 | 71 | nnne0d | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑧 · 𝑧 ) ≠ 0 ) |
| 82 | 78 78 80 81 | divassd | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( ( 𝑃 · 𝑃 ) / ( 𝑧 · 𝑧 ) ) = ( 𝑃 · ( 𝑃 / ( 𝑧 · 𝑧 ) ) ) ) |
| 83 | 79 82 | eqtrd | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( ( 𝑃 / 𝑧 ) · ( 𝑃 / 𝑧 ) ) = ( 𝑃 · ( 𝑃 / ( 𝑧 · 𝑧 ) ) ) ) |
| 84 | 78 80 81 | divcan2d | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( ( 𝑧 · 𝑧 ) · ( 𝑃 / ( 𝑧 · 𝑧 ) ) ) = 𝑃 ) |
| 85 | 84 | eqcomd | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑃 = ( ( 𝑧 · 𝑧 ) · ( 𝑃 / ( 𝑧 · 𝑧 ) ) ) ) |
| 86 | 83 85 | breq12d | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( ( ( 𝑃 / 𝑧 ) · ( 𝑃 / 𝑧 ) ) ≤ 𝑃 ↔ ( 𝑃 · ( 𝑃 / ( 𝑧 · 𝑧 ) ) ) ≤ ( ( 𝑧 · 𝑧 ) · ( 𝑃 / ( 𝑧 · 𝑧 ) ) ) ) ) |
| 87 | 77 86 | bitr4d | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑃 ≤ ( 𝑧 · 𝑧 ) ↔ ( ( 𝑃 / 𝑧 ) · ( 𝑃 / 𝑧 ) ) ≤ 𝑃 ) ) |
| 88 | 87 | biimpd | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑃 ≤ ( 𝑧 · 𝑧 ) → ( ( 𝑃 / 𝑧 ) · ( 𝑃 / 𝑧 ) ) ≤ 𝑃 ) ) |
| 89 | 78 47 39 | divcan2d | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑧 · ( 𝑃 / 𝑧 ) ) = 𝑃 ) |
| 90 | dvds0lem | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ ( 𝑃 / 𝑧 ) ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ ( 𝑧 · ( 𝑃 / 𝑧 ) ) = 𝑃 ) → ( 𝑃 / 𝑧 ) ∥ 𝑃 ) | |
| 91 | 36 44 41 89 90 | syl31anc | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑃 / 𝑧 ) ∥ 𝑃 ) |
| 92 | 88 91 | jctird | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑃 ≤ ( 𝑧 · 𝑧 ) → ( ( ( 𝑃 / 𝑧 ) · ( 𝑃 / 𝑧 ) ) ≤ 𝑃 ∧ ( 𝑃 / 𝑧 ) ∥ 𝑃 ) ) ) |
| 93 | oveq12 | ⊢ ( ( 𝑥 = ( 𝑃 / 𝑧 ) ∧ 𝑥 = ( 𝑃 / 𝑧 ) ) → ( 𝑥 · 𝑥 ) = ( ( 𝑃 / 𝑧 ) · ( 𝑃 / 𝑧 ) ) ) | |
| 94 | 93 | anidms | ⊢ ( 𝑥 = ( 𝑃 / 𝑧 ) → ( 𝑥 · 𝑥 ) = ( ( 𝑃 / 𝑧 ) · ( 𝑃 / 𝑧 ) ) ) |
| 95 | 94 | breq1d | ⊢ ( 𝑥 = ( 𝑃 / 𝑧 ) → ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ↔ ( ( 𝑃 / 𝑧 ) · ( 𝑃 / 𝑧 ) ) ≤ 𝑃 ) ) |
| 96 | breq1 | ⊢ ( 𝑥 = ( 𝑃 / 𝑧 ) → ( 𝑥 ∥ 𝑃 ↔ ( 𝑃 / 𝑧 ) ∥ 𝑃 ) ) | |
| 97 | 95 96 | anbi12d | ⊢ ( 𝑥 = ( 𝑃 / 𝑧 ) → ( ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ↔ ( ( ( 𝑃 / 𝑧 ) · ( 𝑃 / 𝑧 ) ) ≤ 𝑃 ∧ ( 𝑃 / 𝑧 ) ∥ 𝑃 ) ) ) |
| 98 | 97 | rspcev | ⊢ ( ( ( 𝑃 / 𝑧 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( ( ( 𝑃 / 𝑧 ) · ( 𝑃 / 𝑧 ) ) ≤ 𝑃 ∧ ( 𝑃 / 𝑧 ) ∥ 𝑃 ) ) → ∃ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) |
| 99 | 69 92 98 | syl6an | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑃 ≤ ( 𝑧 · 𝑧 ) → ∃ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ) |
| 100 | 70 49 | letrid | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( ( 𝑧 · 𝑧 ) ≤ 𝑃 ∨ 𝑃 ≤ ( 𝑧 · 𝑧 ) ) ) |
| 101 | 33 99 100 | mpjaod | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ∃ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) |
| 102 | 101 | ex | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) → ∃ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ) |
| 103 | 24 102 | biimtrrid | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( ¬ ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) → ∃ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ) |
| 104 | 103 | rexlimdva | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ∃ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ¬ ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) → ∃ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ) |
| 105 | prmz | ⊢ ( 𝑧 ∈ ℙ → 𝑧 ∈ ℤ ) | |
| 106 | 105 | ad2antrl | ⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → 𝑧 ∈ ℤ ) |
| 107 | 106 | zred | ⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → 𝑧 ∈ ℝ ) |
| 108 | 107 107 | remulcld | ⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → ( 𝑧 · 𝑧 ) ∈ ℝ ) |
| 109 | eluzelz | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → 𝑥 ∈ ℤ ) | |
| 110 | 109 | ad3antlr | ⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → 𝑥 ∈ ℤ ) |
| 111 | 110 | zred | ⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → 𝑥 ∈ ℝ ) |
| 112 | 111 111 | remulcld | ⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → ( 𝑥 · 𝑥 ) ∈ ℝ ) |
| 113 | 40 | ad3antrrr | ⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → 𝑃 ∈ ℤ ) |
| 114 | 113 | zred | ⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → 𝑃 ∈ ℝ ) |
| 115 | eluz2nn | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → 𝑥 ∈ ℕ ) | |
| 116 | 115 | ad3antlr | ⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → 𝑥 ∈ ℕ ) |
| 117 | simprr | ⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → 𝑧 ∥ 𝑥 ) | |
| 118 | dvdsle | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℕ ) → ( 𝑧 ∥ 𝑥 → 𝑧 ≤ 𝑥 ) ) | |
| 119 | 118 | imp | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℕ ) ∧ 𝑧 ∥ 𝑥 ) → 𝑧 ≤ 𝑥 ) |
| 120 | 106 116 117 119 | syl21anc | ⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → 𝑧 ≤ 𝑥 ) |
| 121 | eluzge2nn0 | ⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → 𝑧 ∈ ℕ0 ) | |
| 122 | 121 | nn0ge0d | ⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → 0 ≤ 𝑧 ) |
| 123 | 2 122 | syl | ⊢ ( 𝑧 ∈ ℙ → 0 ≤ 𝑧 ) |
| 124 | 123 | ad2antrl | ⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → 0 ≤ 𝑧 ) |
| 125 | nnnn0 | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℕ0 ) | |
| 126 | 125 | nn0ge0d | ⊢ ( 𝑥 ∈ ℕ → 0 ≤ 𝑥 ) |
| 127 | 116 126 | syl | ⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → 0 ≤ 𝑥 ) |
| 128 | le2msq | ⊢ ( ( ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( 𝑧 ≤ 𝑥 ↔ ( 𝑧 · 𝑧 ) ≤ ( 𝑥 · 𝑥 ) ) ) | |
| 129 | 107 124 111 127 128 | syl22anc | ⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → ( 𝑧 ≤ 𝑥 ↔ ( 𝑧 · 𝑧 ) ≤ ( 𝑥 · 𝑥 ) ) ) |
| 130 | 120 129 | mpbid | ⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → ( 𝑧 · 𝑧 ) ≤ ( 𝑥 · 𝑥 ) ) |
| 131 | simplrl | ⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → ( 𝑥 · 𝑥 ) ≤ 𝑃 ) | |
| 132 | 108 112 114 130 131 | letrd | ⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → ( 𝑧 · 𝑧 ) ≤ 𝑃 ) |
| 133 | simplrr | ⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → 𝑥 ∥ 𝑃 ) | |
| 134 | 106 110 113 117 133 | dvdstrd | ⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → 𝑧 ∥ 𝑃 ) |
| 135 | 132 134 | jc | ⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → ¬ ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) |
| 136 | exprmfct | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑧 ∈ ℙ 𝑧 ∥ 𝑥 ) | |
| 137 | 136 | ad2antlr | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) → ∃ 𝑧 ∈ ℙ 𝑧 ∥ 𝑥 ) |
| 138 | 135 137 | reximddv | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) → ∃ 𝑧 ∈ ℙ ¬ ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) |
| 139 | 138 | ex | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) → ∃ 𝑧 ∈ ℙ ¬ ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ) |
| 140 | 139 | rexlimdva | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ∃ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) → ∃ 𝑧 ∈ ℙ ¬ ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ) |
| 141 | 104 140 | syld | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ∃ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ¬ ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) → ∃ 𝑧 ∈ ℙ ¬ ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ) |
| 142 | rexnal | ⊢ ( ∃ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ¬ ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ↔ ¬ ∀ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) | |
| 143 | rexnal | ⊢ ( ∃ 𝑧 ∈ ℙ ¬ ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ↔ ¬ ∀ 𝑧 ∈ ℙ ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) | |
| 144 | 141 142 143 | 3imtr3g | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ¬ ∀ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) → ¬ ∀ 𝑧 ∈ ℙ ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ) |
| 145 | 23 144 | impcon4bid | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ↔ ∀ 𝑧 ∈ ℙ ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ) |
| 146 | prmnn | ⊢ ( 𝑧 ∈ ℙ → 𝑧 ∈ ℕ ) | |
| 147 | 146 | nncnd | ⊢ ( 𝑧 ∈ ℙ → 𝑧 ∈ ℂ ) |
| 148 | 147 | sqvald | ⊢ ( 𝑧 ∈ ℙ → ( 𝑧 ↑ 2 ) = ( 𝑧 · 𝑧 ) ) |
| 149 | 148 | breq1d | ⊢ ( 𝑧 ∈ ℙ → ( ( 𝑧 ↑ 2 ) ≤ 𝑃 ↔ ( 𝑧 · 𝑧 ) ≤ 𝑃 ) ) |
| 150 | 149 | imbi1d | ⊢ ( 𝑧 ∈ ℙ → ( ( ( 𝑧 ↑ 2 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ↔ ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ) |
| 151 | 150 | ralbiia | ⊢ ( ∀ 𝑧 ∈ ℙ ( ( 𝑧 ↑ 2 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ↔ ∀ 𝑧 ∈ ℙ ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) |
| 152 | 145 151 | bitr4di | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ↔ ∀ 𝑧 ∈ ℙ ( ( 𝑧 ↑ 2 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ) |
| 153 | 152 | pm5.32i | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℙ ( ( 𝑧 ↑ 2 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ) |
| 154 | 1 153 | bitri | ⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℙ ( ( 𝑧 ↑ 2 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ) |