This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only divisor greater than or equal to 2 is itself. (Contributed by Paul Chapman, 26-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isprm4 | ⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprm2 | ⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℕ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) | |
| 2 | eluz2b3 | ⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑧 ∈ ℕ ∧ 𝑧 ≠ 1 ) ) | |
| 3 | 2 | imbi1i | ⊢ ( ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) ↔ ( ( 𝑧 ∈ ℕ ∧ 𝑧 ≠ 1 ) → ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) ) |
| 4 | impexp | ⊢ ( ( ( 𝑧 ∈ ℕ ∧ 𝑧 ≠ 1 ) → ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) ↔ ( 𝑧 ∈ ℕ → ( 𝑧 ≠ 1 → ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) ) ) | |
| 5 | bi2.04 | ⊢ ( ( 𝑧 ≠ 1 → ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) ↔ ( 𝑧 ∥ 𝑃 → ( 𝑧 ≠ 1 → 𝑧 = 𝑃 ) ) ) | |
| 6 | df-ne | ⊢ ( 𝑧 ≠ 1 ↔ ¬ 𝑧 = 1 ) | |
| 7 | 6 | imbi1i | ⊢ ( ( 𝑧 ≠ 1 → 𝑧 = 𝑃 ) ↔ ( ¬ 𝑧 = 1 → 𝑧 = 𝑃 ) ) |
| 8 | df-or | ⊢ ( ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ↔ ( ¬ 𝑧 = 1 → 𝑧 = 𝑃 ) ) | |
| 9 | 7 8 | bitr4i | ⊢ ( ( 𝑧 ≠ 1 → 𝑧 = 𝑃 ) ↔ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) |
| 10 | 9 | imbi2i | ⊢ ( ( 𝑧 ∥ 𝑃 → ( 𝑧 ≠ 1 → 𝑧 = 𝑃 ) ) ↔ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) |
| 11 | 5 10 | bitri | ⊢ ( ( 𝑧 ≠ 1 → ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) ↔ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) |
| 12 | 11 | imbi2i | ⊢ ( ( 𝑧 ∈ ℕ → ( 𝑧 ≠ 1 → ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) ) ↔ ( 𝑧 ∈ ℕ → ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) |
| 13 | 4 12 | bitri | ⊢ ( ( ( 𝑧 ∈ ℕ ∧ 𝑧 ≠ 1 ) → ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) ↔ ( 𝑧 ∈ ℕ → ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) |
| 14 | 3 13 | bitri | ⊢ ( ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) ↔ ( 𝑧 ∈ ℕ → ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) |
| 15 | 14 | ralbii2 | ⊢ ( ∀ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ↔ ∀ 𝑧 ∈ ℕ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) |
| 16 | 15 | anbi2i | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℕ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) |
| 17 | 1 16 | bitr4i | ⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) ) |