This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication by a number greater than 1. (Contributed by NM, 24-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltmulgt11 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 < 𝐵 ↔ 𝐴 < ( 𝐴 · 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re | ⊢ 1 ∈ ℝ | |
| 2 | ltmul2 | ⊢ ( ( 1 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 1 < 𝐵 ↔ ( 𝐴 · 1 ) < ( 𝐴 · 𝐵 ) ) ) | |
| 3 | 1 2 | mp3an1 | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 1 < 𝐵 ↔ ( 𝐴 · 1 ) < ( 𝐴 · 𝐵 ) ) ) |
| 4 | 3 | 3impb | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 < 𝐵 ↔ ( 𝐴 · 1 ) < ( 𝐴 · 𝐵 ) ) ) |
| 5 | 4 | 3com12 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 < 𝐵 ↔ ( 𝐴 · 1 ) < ( 𝐴 · 𝐵 ) ) ) |
| 6 | ax-1rid | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · 1 ) = 𝐴 ) | |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴 ) → ( 𝐴 · 1 ) = 𝐴 ) |
| 8 | 7 | breq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( 𝐴 · 1 ) < ( 𝐴 · 𝐵 ) ↔ 𝐴 < ( 𝐴 · 𝐵 ) ) ) |
| 9 | 5 8 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 < 𝐵 ↔ 𝐴 < ( 𝐴 · 𝐵 ) ) ) |