This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One need only check prime divisors of P up to sqrt P in order to ensure primality. (Contributed by Mario Carneiro, 18-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isprm5 | |- ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. Prime ( ( z ^ 2 ) <_ P -> -. z || P ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprm4 | |- ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. ( ZZ>= ` 2 ) ( z || P -> z = P ) ) ) |
|
| 2 | prmuz2 | |- ( z e. Prime -> z e. ( ZZ>= ` 2 ) ) |
|
| 3 | 2 | a1i | |- ( P e. ( ZZ>= ` 2 ) -> ( z e. Prime -> z e. ( ZZ>= ` 2 ) ) ) |
| 4 | eluz2gt1 | |- ( P e. ( ZZ>= ` 2 ) -> 1 < P ) |
|
| 5 | eluzelre | |- ( P e. ( ZZ>= ` 2 ) -> P e. RR ) |
|
| 6 | eluz2nn | |- ( P e. ( ZZ>= ` 2 ) -> P e. NN ) |
|
| 7 | 6 | nngt0d | |- ( P e. ( ZZ>= ` 2 ) -> 0 < P ) |
| 8 | ltmulgt11 | |- ( ( P e. RR /\ P e. RR /\ 0 < P ) -> ( 1 < P <-> P < ( P x. P ) ) ) |
|
| 9 | 5 5 7 8 | syl3anc | |- ( P e. ( ZZ>= ` 2 ) -> ( 1 < P <-> P < ( P x. P ) ) ) |
| 10 | 4 9 | mpbid | |- ( P e. ( ZZ>= ` 2 ) -> P < ( P x. P ) ) |
| 11 | 5 5 | remulcld | |- ( P e. ( ZZ>= ` 2 ) -> ( P x. P ) e. RR ) |
| 12 | 5 11 | ltnled | |- ( P e. ( ZZ>= ` 2 ) -> ( P < ( P x. P ) <-> -. ( P x. P ) <_ P ) ) |
| 13 | 10 12 | mpbid | |- ( P e. ( ZZ>= ` 2 ) -> -. ( P x. P ) <_ P ) |
| 14 | oveq12 | |- ( ( z = P /\ z = P ) -> ( z x. z ) = ( P x. P ) ) |
|
| 15 | 14 | anidms | |- ( z = P -> ( z x. z ) = ( P x. P ) ) |
| 16 | 15 | breq1d | |- ( z = P -> ( ( z x. z ) <_ P <-> ( P x. P ) <_ P ) ) |
| 17 | 16 | notbid | |- ( z = P -> ( -. ( z x. z ) <_ P <-> -. ( P x. P ) <_ P ) ) |
| 18 | 13 17 | syl5ibrcom | |- ( P e. ( ZZ>= ` 2 ) -> ( z = P -> -. ( z x. z ) <_ P ) ) |
| 19 | 18 | imim2d | |- ( P e. ( ZZ>= ` 2 ) -> ( ( z || P -> z = P ) -> ( z || P -> -. ( z x. z ) <_ P ) ) ) |
| 20 | con2 | |- ( ( z || P -> -. ( z x. z ) <_ P ) -> ( ( z x. z ) <_ P -> -. z || P ) ) |
|
| 21 | 19 20 | syl6 | |- ( P e. ( ZZ>= ` 2 ) -> ( ( z || P -> z = P ) -> ( ( z x. z ) <_ P -> -. z || P ) ) ) |
| 22 | 3 21 | imim12d | |- ( P e. ( ZZ>= ` 2 ) -> ( ( z e. ( ZZ>= ` 2 ) -> ( z || P -> z = P ) ) -> ( z e. Prime -> ( ( z x. z ) <_ P -> -. z || P ) ) ) ) |
| 23 | 22 | ralimdv2 | |- ( P e. ( ZZ>= ` 2 ) -> ( A. z e. ( ZZ>= ` 2 ) ( z || P -> z = P ) -> A. z e. Prime ( ( z x. z ) <_ P -> -. z || P ) ) ) |
| 24 | annim | |- ( ( z || P /\ -. z = P ) <-> -. ( z || P -> z = P ) ) |
|
| 25 | oveq12 | |- ( ( x = z /\ x = z ) -> ( x x. x ) = ( z x. z ) ) |
|
| 26 | 25 | anidms | |- ( x = z -> ( x x. x ) = ( z x. z ) ) |
| 27 | 26 | breq1d | |- ( x = z -> ( ( x x. x ) <_ P <-> ( z x. z ) <_ P ) ) |
| 28 | breq1 | |- ( x = z -> ( x || P <-> z || P ) ) |
|
| 29 | 27 28 | anbi12d | |- ( x = z -> ( ( ( x x. x ) <_ P /\ x || P ) <-> ( ( z x. z ) <_ P /\ z || P ) ) ) |
| 30 | 29 | rspcev | |- ( ( z e. ( ZZ>= ` 2 ) /\ ( ( z x. z ) <_ P /\ z || P ) ) -> E. x e. ( ZZ>= ` 2 ) ( ( x x. x ) <_ P /\ x || P ) ) |
| 31 | 30 | ancom2s | |- ( ( z e. ( ZZ>= ` 2 ) /\ ( z || P /\ ( z x. z ) <_ P ) ) -> E. x e. ( ZZ>= ` 2 ) ( ( x x. x ) <_ P /\ x || P ) ) |
| 32 | 31 | expr | |- ( ( z e. ( ZZ>= ` 2 ) /\ z || P ) -> ( ( z x. z ) <_ P -> E. x e. ( ZZ>= ` 2 ) ( ( x x. x ) <_ P /\ x || P ) ) ) |
| 33 | 32 | ad2ant2lr | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> ( ( z x. z ) <_ P -> E. x e. ( ZZ>= ` 2 ) ( ( x x. x ) <_ P /\ x || P ) ) ) |
| 34 | simprl | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> z || P ) |
|
| 35 | eluzelz | |- ( z e. ( ZZ>= ` 2 ) -> z e. ZZ ) |
|
| 36 | 35 | ad2antlr | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> z e. ZZ ) |
| 37 | eluz2nn | |- ( z e. ( ZZ>= ` 2 ) -> z e. NN ) |
|
| 38 | 37 | ad2antlr | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> z e. NN ) |
| 39 | 38 | nnne0d | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> z =/= 0 ) |
| 40 | eluzelz | |- ( P e. ( ZZ>= ` 2 ) -> P e. ZZ ) |
|
| 41 | 40 | ad2antrr | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> P e. ZZ ) |
| 42 | dvdsval2 | |- ( ( z e. ZZ /\ z =/= 0 /\ P e. ZZ ) -> ( z || P <-> ( P / z ) e. ZZ ) ) |
|
| 43 | 36 39 41 42 | syl3anc | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> ( z || P <-> ( P / z ) e. ZZ ) ) |
| 44 | 34 43 | mpbid | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> ( P / z ) e. ZZ ) |
| 45 | eluzelre | |- ( z e. ( ZZ>= ` 2 ) -> z e. RR ) |
|
| 46 | 45 | ad2antlr | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> z e. RR ) |
| 47 | 46 | recnd | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> z e. CC ) |
| 48 | 47 | mullidd | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> ( 1 x. z ) = z ) |
| 49 | 5 | ad2antrr | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> P e. RR ) |
| 50 | 6 | ad2antrr | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> P e. NN ) |
| 51 | dvdsle | |- ( ( z e. ZZ /\ P e. NN ) -> ( z || P -> z <_ P ) ) |
|
| 52 | 51 | imp | |- ( ( ( z e. ZZ /\ P e. NN ) /\ z || P ) -> z <_ P ) |
| 53 | 36 50 34 52 | syl21anc | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> z <_ P ) |
| 54 | simprr | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> -. z = P ) |
|
| 55 | 54 | neqned | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> z =/= P ) |
| 56 | 55 | necomd | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> P =/= z ) |
| 57 | 46 49 53 56 | leneltd | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> z < P ) |
| 58 | 48 57 | eqbrtrd | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> ( 1 x. z ) < P ) |
| 59 | 1red | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> 1 e. RR ) |
|
| 60 | 41 | zred | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> P e. RR ) |
| 61 | nnre | |- ( z e. NN -> z e. RR ) |
|
| 62 | nngt0 | |- ( z e. NN -> 0 < z ) |
|
| 63 | 61 62 | jca | |- ( z e. NN -> ( z e. RR /\ 0 < z ) ) |
| 64 | 38 63 | syl | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> ( z e. RR /\ 0 < z ) ) |
| 65 | ltmuldiv | |- ( ( 1 e. RR /\ P e. RR /\ ( z e. RR /\ 0 < z ) ) -> ( ( 1 x. z ) < P <-> 1 < ( P / z ) ) ) |
|
| 66 | 59 60 64 65 | syl3anc | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> ( ( 1 x. z ) < P <-> 1 < ( P / z ) ) ) |
| 67 | 58 66 | mpbid | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> 1 < ( P / z ) ) |
| 68 | eluz2b1 | |- ( ( P / z ) e. ( ZZ>= ` 2 ) <-> ( ( P / z ) e. ZZ /\ 1 < ( P / z ) ) ) |
|
| 69 | 44 67 68 | sylanbrc | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> ( P / z ) e. ( ZZ>= ` 2 ) ) |
| 70 | 46 46 | remulcld | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> ( z x. z ) e. RR ) |
| 71 | 38 38 | nnmulcld | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> ( z x. z ) e. NN ) |
| 72 | nnrp | |- ( P e. NN -> P e. RR+ ) |
|
| 73 | nnrp | |- ( ( z x. z ) e. NN -> ( z x. z ) e. RR+ ) |
|
| 74 | rpdivcl | |- ( ( P e. RR+ /\ ( z x. z ) e. RR+ ) -> ( P / ( z x. z ) ) e. RR+ ) |
|
| 75 | 72 73 74 | syl2an | |- ( ( P e. NN /\ ( z x. z ) e. NN ) -> ( P / ( z x. z ) ) e. RR+ ) |
| 76 | 50 71 75 | syl2anc | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> ( P / ( z x. z ) ) e. RR+ ) |
| 77 | 49 70 76 | lemul1d | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> ( P <_ ( z x. z ) <-> ( P x. ( P / ( z x. z ) ) ) <_ ( ( z x. z ) x. ( P / ( z x. z ) ) ) ) ) |
| 78 | 49 | recnd | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> P e. CC ) |
| 79 | 78 47 78 47 39 39 | divmuldivd | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> ( ( P / z ) x. ( P / z ) ) = ( ( P x. P ) / ( z x. z ) ) ) |
| 80 | 71 | nncnd | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> ( z x. z ) e. CC ) |
| 81 | 71 | nnne0d | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> ( z x. z ) =/= 0 ) |
| 82 | 78 78 80 81 | divassd | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> ( ( P x. P ) / ( z x. z ) ) = ( P x. ( P / ( z x. z ) ) ) ) |
| 83 | 79 82 | eqtrd | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> ( ( P / z ) x. ( P / z ) ) = ( P x. ( P / ( z x. z ) ) ) ) |
| 84 | 78 80 81 | divcan2d | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> ( ( z x. z ) x. ( P / ( z x. z ) ) ) = P ) |
| 85 | 84 | eqcomd | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> P = ( ( z x. z ) x. ( P / ( z x. z ) ) ) ) |
| 86 | 83 85 | breq12d | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> ( ( ( P / z ) x. ( P / z ) ) <_ P <-> ( P x. ( P / ( z x. z ) ) ) <_ ( ( z x. z ) x. ( P / ( z x. z ) ) ) ) ) |
| 87 | 77 86 | bitr4d | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> ( P <_ ( z x. z ) <-> ( ( P / z ) x. ( P / z ) ) <_ P ) ) |
| 88 | 87 | biimpd | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> ( P <_ ( z x. z ) -> ( ( P / z ) x. ( P / z ) ) <_ P ) ) |
| 89 | 78 47 39 | divcan2d | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> ( z x. ( P / z ) ) = P ) |
| 90 | dvds0lem | |- ( ( ( z e. ZZ /\ ( P / z ) e. ZZ /\ P e. ZZ ) /\ ( z x. ( P / z ) ) = P ) -> ( P / z ) || P ) |
|
| 91 | 36 44 41 89 90 | syl31anc | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> ( P / z ) || P ) |
| 92 | 88 91 | jctird | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> ( P <_ ( z x. z ) -> ( ( ( P / z ) x. ( P / z ) ) <_ P /\ ( P / z ) || P ) ) ) |
| 93 | oveq12 | |- ( ( x = ( P / z ) /\ x = ( P / z ) ) -> ( x x. x ) = ( ( P / z ) x. ( P / z ) ) ) |
|
| 94 | 93 | anidms | |- ( x = ( P / z ) -> ( x x. x ) = ( ( P / z ) x. ( P / z ) ) ) |
| 95 | 94 | breq1d | |- ( x = ( P / z ) -> ( ( x x. x ) <_ P <-> ( ( P / z ) x. ( P / z ) ) <_ P ) ) |
| 96 | breq1 | |- ( x = ( P / z ) -> ( x || P <-> ( P / z ) || P ) ) |
|
| 97 | 95 96 | anbi12d | |- ( x = ( P / z ) -> ( ( ( x x. x ) <_ P /\ x || P ) <-> ( ( ( P / z ) x. ( P / z ) ) <_ P /\ ( P / z ) || P ) ) ) |
| 98 | 97 | rspcev | |- ( ( ( P / z ) e. ( ZZ>= ` 2 ) /\ ( ( ( P / z ) x. ( P / z ) ) <_ P /\ ( P / z ) || P ) ) -> E. x e. ( ZZ>= ` 2 ) ( ( x x. x ) <_ P /\ x || P ) ) |
| 99 | 69 92 98 | syl6an | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> ( P <_ ( z x. z ) -> E. x e. ( ZZ>= ` 2 ) ( ( x x. x ) <_ P /\ x || P ) ) ) |
| 100 | 70 49 | letrid | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> ( ( z x. z ) <_ P \/ P <_ ( z x. z ) ) ) |
| 101 | 33 99 100 | mpjaod | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ ( z || P /\ -. z = P ) ) -> E. x e. ( ZZ>= ` 2 ) ( ( x x. x ) <_ P /\ x || P ) ) |
| 102 | 101 | ex | |- ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) -> ( ( z || P /\ -. z = P ) -> E. x e. ( ZZ>= ` 2 ) ( ( x x. x ) <_ P /\ x || P ) ) ) |
| 103 | 24 102 | biimtrrid | |- ( ( P e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) -> ( -. ( z || P -> z = P ) -> E. x e. ( ZZ>= ` 2 ) ( ( x x. x ) <_ P /\ x || P ) ) ) |
| 104 | 103 | rexlimdva | |- ( P e. ( ZZ>= ` 2 ) -> ( E. z e. ( ZZ>= ` 2 ) -. ( z || P -> z = P ) -> E. x e. ( ZZ>= ` 2 ) ( ( x x. x ) <_ P /\ x || P ) ) ) |
| 105 | prmz | |- ( z e. Prime -> z e. ZZ ) |
|
| 106 | 105 | ad2antrl | |- ( ( ( ( P e. ( ZZ>= ` 2 ) /\ x e. ( ZZ>= ` 2 ) ) /\ ( ( x x. x ) <_ P /\ x || P ) ) /\ ( z e. Prime /\ z || x ) ) -> z e. ZZ ) |
| 107 | 106 | zred | |- ( ( ( ( P e. ( ZZ>= ` 2 ) /\ x e. ( ZZ>= ` 2 ) ) /\ ( ( x x. x ) <_ P /\ x || P ) ) /\ ( z e. Prime /\ z || x ) ) -> z e. RR ) |
| 108 | 107 107 | remulcld | |- ( ( ( ( P e. ( ZZ>= ` 2 ) /\ x e. ( ZZ>= ` 2 ) ) /\ ( ( x x. x ) <_ P /\ x || P ) ) /\ ( z e. Prime /\ z || x ) ) -> ( z x. z ) e. RR ) |
| 109 | eluzelz | |- ( x e. ( ZZ>= ` 2 ) -> x e. ZZ ) |
|
| 110 | 109 | ad3antlr | |- ( ( ( ( P e. ( ZZ>= ` 2 ) /\ x e. ( ZZ>= ` 2 ) ) /\ ( ( x x. x ) <_ P /\ x || P ) ) /\ ( z e. Prime /\ z || x ) ) -> x e. ZZ ) |
| 111 | 110 | zred | |- ( ( ( ( P e. ( ZZ>= ` 2 ) /\ x e. ( ZZ>= ` 2 ) ) /\ ( ( x x. x ) <_ P /\ x || P ) ) /\ ( z e. Prime /\ z || x ) ) -> x e. RR ) |
| 112 | 111 111 | remulcld | |- ( ( ( ( P e. ( ZZ>= ` 2 ) /\ x e. ( ZZ>= ` 2 ) ) /\ ( ( x x. x ) <_ P /\ x || P ) ) /\ ( z e. Prime /\ z || x ) ) -> ( x x. x ) e. RR ) |
| 113 | 40 | ad3antrrr | |- ( ( ( ( P e. ( ZZ>= ` 2 ) /\ x e. ( ZZ>= ` 2 ) ) /\ ( ( x x. x ) <_ P /\ x || P ) ) /\ ( z e. Prime /\ z || x ) ) -> P e. ZZ ) |
| 114 | 113 | zred | |- ( ( ( ( P e. ( ZZ>= ` 2 ) /\ x e. ( ZZ>= ` 2 ) ) /\ ( ( x x. x ) <_ P /\ x || P ) ) /\ ( z e. Prime /\ z || x ) ) -> P e. RR ) |
| 115 | eluz2nn | |- ( x e. ( ZZ>= ` 2 ) -> x e. NN ) |
|
| 116 | 115 | ad3antlr | |- ( ( ( ( P e. ( ZZ>= ` 2 ) /\ x e. ( ZZ>= ` 2 ) ) /\ ( ( x x. x ) <_ P /\ x || P ) ) /\ ( z e. Prime /\ z || x ) ) -> x e. NN ) |
| 117 | simprr | |- ( ( ( ( P e. ( ZZ>= ` 2 ) /\ x e. ( ZZ>= ` 2 ) ) /\ ( ( x x. x ) <_ P /\ x || P ) ) /\ ( z e. Prime /\ z || x ) ) -> z || x ) |
|
| 118 | dvdsle | |- ( ( z e. ZZ /\ x e. NN ) -> ( z || x -> z <_ x ) ) |
|
| 119 | 118 | imp | |- ( ( ( z e. ZZ /\ x e. NN ) /\ z || x ) -> z <_ x ) |
| 120 | 106 116 117 119 | syl21anc | |- ( ( ( ( P e. ( ZZ>= ` 2 ) /\ x e. ( ZZ>= ` 2 ) ) /\ ( ( x x. x ) <_ P /\ x || P ) ) /\ ( z e. Prime /\ z || x ) ) -> z <_ x ) |
| 121 | eluzge2nn0 | |- ( z e. ( ZZ>= ` 2 ) -> z e. NN0 ) |
|
| 122 | 121 | nn0ge0d | |- ( z e. ( ZZ>= ` 2 ) -> 0 <_ z ) |
| 123 | 2 122 | syl | |- ( z e. Prime -> 0 <_ z ) |
| 124 | 123 | ad2antrl | |- ( ( ( ( P e. ( ZZ>= ` 2 ) /\ x e. ( ZZ>= ` 2 ) ) /\ ( ( x x. x ) <_ P /\ x || P ) ) /\ ( z e. Prime /\ z || x ) ) -> 0 <_ z ) |
| 125 | nnnn0 | |- ( x e. NN -> x e. NN0 ) |
|
| 126 | 125 | nn0ge0d | |- ( x e. NN -> 0 <_ x ) |
| 127 | 116 126 | syl | |- ( ( ( ( P e. ( ZZ>= ` 2 ) /\ x e. ( ZZ>= ` 2 ) ) /\ ( ( x x. x ) <_ P /\ x || P ) ) /\ ( z e. Prime /\ z || x ) ) -> 0 <_ x ) |
| 128 | le2msq | |- ( ( ( z e. RR /\ 0 <_ z ) /\ ( x e. RR /\ 0 <_ x ) ) -> ( z <_ x <-> ( z x. z ) <_ ( x x. x ) ) ) |
|
| 129 | 107 124 111 127 128 | syl22anc | |- ( ( ( ( P e. ( ZZ>= ` 2 ) /\ x e. ( ZZ>= ` 2 ) ) /\ ( ( x x. x ) <_ P /\ x || P ) ) /\ ( z e. Prime /\ z || x ) ) -> ( z <_ x <-> ( z x. z ) <_ ( x x. x ) ) ) |
| 130 | 120 129 | mpbid | |- ( ( ( ( P e. ( ZZ>= ` 2 ) /\ x e. ( ZZ>= ` 2 ) ) /\ ( ( x x. x ) <_ P /\ x || P ) ) /\ ( z e. Prime /\ z || x ) ) -> ( z x. z ) <_ ( x x. x ) ) |
| 131 | simplrl | |- ( ( ( ( P e. ( ZZ>= ` 2 ) /\ x e. ( ZZ>= ` 2 ) ) /\ ( ( x x. x ) <_ P /\ x || P ) ) /\ ( z e. Prime /\ z || x ) ) -> ( x x. x ) <_ P ) |
|
| 132 | 108 112 114 130 131 | letrd | |- ( ( ( ( P e. ( ZZ>= ` 2 ) /\ x e. ( ZZ>= ` 2 ) ) /\ ( ( x x. x ) <_ P /\ x || P ) ) /\ ( z e. Prime /\ z || x ) ) -> ( z x. z ) <_ P ) |
| 133 | simplrr | |- ( ( ( ( P e. ( ZZ>= ` 2 ) /\ x e. ( ZZ>= ` 2 ) ) /\ ( ( x x. x ) <_ P /\ x || P ) ) /\ ( z e. Prime /\ z || x ) ) -> x || P ) |
|
| 134 | 106 110 113 117 133 | dvdstrd | |- ( ( ( ( P e. ( ZZ>= ` 2 ) /\ x e. ( ZZ>= ` 2 ) ) /\ ( ( x x. x ) <_ P /\ x || P ) ) /\ ( z e. Prime /\ z || x ) ) -> z || P ) |
| 135 | 132 134 | jc | |- ( ( ( ( P e. ( ZZ>= ` 2 ) /\ x e. ( ZZ>= ` 2 ) ) /\ ( ( x x. x ) <_ P /\ x || P ) ) /\ ( z e. Prime /\ z || x ) ) -> -. ( ( z x. z ) <_ P -> -. z || P ) ) |
| 136 | exprmfct | |- ( x e. ( ZZ>= ` 2 ) -> E. z e. Prime z || x ) |
|
| 137 | 136 | ad2antlr | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ x e. ( ZZ>= ` 2 ) ) /\ ( ( x x. x ) <_ P /\ x || P ) ) -> E. z e. Prime z || x ) |
| 138 | 135 137 | reximddv | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ x e. ( ZZ>= ` 2 ) ) /\ ( ( x x. x ) <_ P /\ x || P ) ) -> E. z e. Prime -. ( ( z x. z ) <_ P -> -. z || P ) ) |
| 139 | 138 | ex | |- ( ( P e. ( ZZ>= ` 2 ) /\ x e. ( ZZ>= ` 2 ) ) -> ( ( ( x x. x ) <_ P /\ x || P ) -> E. z e. Prime -. ( ( z x. z ) <_ P -> -. z || P ) ) ) |
| 140 | 139 | rexlimdva | |- ( P e. ( ZZ>= ` 2 ) -> ( E. x e. ( ZZ>= ` 2 ) ( ( x x. x ) <_ P /\ x || P ) -> E. z e. Prime -. ( ( z x. z ) <_ P -> -. z || P ) ) ) |
| 141 | 104 140 | syld | |- ( P e. ( ZZ>= ` 2 ) -> ( E. z e. ( ZZ>= ` 2 ) -. ( z || P -> z = P ) -> E. z e. Prime -. ( ( z x. z ) <_ P -> -. z || P ) ) ) |
| 142 | rexnal | |- ( E. z e. ( ZZ>= ` 2 ) -. ( z || P -> z = P ) <-> -. A. z e. ( ZZ>= ` 2 ) ( z || P -> z = P ) ) |
|
| 143 | rexnal | |- ( E. z e. Prime -. ( ( z x. z ) <_ P -> -. z || P ) <-> -. A. z e. Prime ( ( z x. z ) <_ P -> -. z || P ) ) |
|
| 144 | 141 142 143 | 3imtr3g | |- ( P e. ( ZZ>= ` 2 ) -> ( -. A. z e. ( ZZ>= ` 2 ) ( z || P -> z = P ) -> -. A. z e. Prime ( ( z x. z ) <_ P -> -. z || P ) ) ) |
| 145 | 23 144 | impcon4bid | |- ( P e. ( ZZ>= ` 2 ) -> ( A. z e. ( ZZ>= ` 2 ) ( z || P -> z = P ) <-> A. z e. Prime ( ( z x. z ) <_ P -> -. z || P ) ) ) |
| 146 | prmnn | |- ( z e. Prime -> z e. NN ) |
|
| 147 | 146 | nncnd | |- ( z e. Prime -> z e. CC ) |
| 148 | 147 | sqvald | |- ( z e. Prime -> ( z ^ 2 ) = ( z x. z ) ) |
| 149 | 148 | breq1d | |- ( z e. Prime -> ( ( z ^ 2 ) <_ P <-> ( z x. z ) <_ P ) ) |
| 150 | 149 | imbi1d | |- ( z e. Prime -> ( ( ( z ^ 2 ) <_ P -> -. z || P ) <-> ( ( z x. z ) <_ P -> -. z || P ) ) ) |
| 151 | 150 | ralbiia | |- ( A. z e. Prime ( ( z ^ 2 ) <_ P -> -. z || P ) <-> A. z e. Prime ( ( z x. z ) <_ P -> -. z || P ) ) |
| 152 | 145 151 | bitr4di | |- ( P e. ( ZZ>= ` 2 ) -> ( A. z e. ( ZZ>= ` 2 ) ( z || P -> z = P ) <-> A. z e. Prime ( ( z ^ 2 ) <_ P -> -. z || P ) ) ) |
| 153 | 152 | pm5.32i | |- ( ( P e. ( ZZ>= ` 2 ) /\ A. z e. ( ZZ>= ` 2 ) ( z || P -> z = P ) ) <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. Prime ( ( z ^ 2 ) <_ P -> -. z || P ) ) ) |
| 154 | 1 153 | bitri | |- ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. Prime ( ( z ^ 2 ) <_ P -> -. z || P ) ) ) |