This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One need only check prime divisors of P up to sqrt P in order to ensure primality. This version of isprm5 combines the primality and bound on z into a finite interval of prime numbers. (Contributed by Steve Rodriguez, 20-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isprm7 | ⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) ¬ 𝑧 ∥ 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprm5 | ⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℙ ( ( 𝑧 ↑ 2 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ) | |
| 2 | prmz | ⊢ ( 𝑧 ∈ ℙ → 𝑧 ∈ ℤ ) | |
| 3 | 2 | zred | ⊢ ( 𝑧 ∈ ℙ → 𝑧 ∈ ℝ ) |
| 4 | 0red | ⊢ ( 𝑧 ∈ ℙ → 0 ∈ ℝ ) | |
| 5 | 1red | ⊢ ( 𝑧 ∈ ℙ → 1 ∈ ℝ ) | |
| 6 | 0lt1 | ⊢ 0 < 1 | |
| 7 | 6 | a1i | ⊢ ( 𝑧 ∈ ℙ → 0 < 1 ) |
| 8 | prmgt1 | ⊢ ( 𝑧 ∈ ℙ → 1 < 𝑧 ) | |
| 9 | 4 5 3 7 8 | lttrd | ⊢ ( 𝑧 ∈ ℙ → 0 < 𝑧 ) |
| 10 | 4 3 9 | ltled | ⊢ ( 𝑧 ∈ ℙ → 0 ≤ 𝑧 ) |
| 11 | 3 10 | jca | ⊢ ( 𝑧 ∈ ℙ → ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ) ) |
| 12 | eluzelre | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℝ ) | |
| 13 | 0red | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 0 ∈ ℝ ) | |
| 14 | 2re | ⊢ 2 ∈ ℝ | |
| 15 | 14 | a1i | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 2 ∈ ℝ ) |
| 16 | 0le2 | ⊢ 0 ≤ 2 | |
| 17 | 16 | a1i | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 0 ≤ 2 ) |
| 18 | eluzle | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 2 ≤ 𝑃 ) | |
| 19 | 13 15 12 17 18 | letrd | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 0 ≤ 𝑃 ) |
| 20 | 12 19 | jca | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑃 ∈ ℝ ∧ 0 ≤ 𝑃 ) ) |
| 21 | resqcl | ⊢ ( 𝑧 ∈ ℝ → ( 𝑧 ↑ 2 ) ∈ ℝ ) | |
| 22 | sqge0 | ⊢ ( 𝑧 ∈ ℝ → 0 ≤ ( 𝑧 ↑ 2 ) ) | |
| 23 | 21 22 | jca | ⊢ ( 𝑧 ∈ ℝ → ( ( 𝑧 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝑧 ↑ 2 ) ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ) → ( ( 𝑧 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝑧 ↑ 2 ) ) ) |
| 25 | sqrtle | ⊢ ( ( ( ( 𝑧 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝑧 ↑ 2 ) ) ∧ ( 𝑃 ∈ ℝ ∧ 0 ≤ 𝑃 ) ) → ( ( 𝑧 ↑ 2 ) ≤ 𝑃 ↔ ( √ ‘ ( 𝑧 ↑ 2 ) ) ≤ ( √ ‘ 𝑃 ) ) ) | |
| 26 | 24 25 | sylan | ⊢ ( ( ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ) ∧ ( 𝑃 ∈ ℝ ∧ 0 ≤ 𝑃 ) ) → ( ( 𝑧 ↑ 2 ) ≤ 𝑃 ↔ ( √ ‘ ( 𝑧 ↑ 2 ) ) ≤ ( √ ‘ 𝑃 ) ) ) |
| 27 | sqrtsq | ⊢ ( ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ) → ( √ ‘ ( 𝑧 ↑ 2 ) ) = 𝑧 ) | |
| 28 | 27 | breq1d | ⊢ ( ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ) → ( ( √ ‘ ( 𝑧 ↑ 2 ) ) ≤ ( √ ‘ 𝑃 ) ↔ 𝑧 ≤ ( √ ‘ 𝑃 ) ) ) |
| 29 | 28 | adantr | ⊢ ( ( ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ) ∧ ( 𝑃 ∈ ℝ ∧ 0 ≤ 𝑃 ) ) → ( ( √ ‘ ( 𝑧 ↑ 2 ) ) ≤ ( √ ‘ 𝑃 ) ↔ 𝑧 ≤ ( √ ‘ 𝑃 ) ) ) |
| 30 | 26 29 | bitrd | ⊢ ( ( ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ) ∧ ( 𝑃 ∈ ℝ ∧ 0 ≤ 𝑃 ) ) → ( ( 𝑧 ↑ 2 ) ≤ 𝑃 ↔ 𝑧 ≤ ( √ ‘ 𝑃 ) ) ) |
| 31 | 11 20 30 | syl2anr | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ℙ ) → ( ( 𝑧 ↑ 2 ) ≤ 𝑃 ↔ 𝑧 ≤ ( √ ‘ 𝑃 ) ) ) |
| 32 | 31 | imbi1d | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ℙ ) → ( ( ( 𝑧 ↑ 2 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ↔ ( 𝑧 ≤ ( √ ‘ 𝑃 ) → ¬ 𝑧 ∥ 𝑃 ) ) ) |
| 33 | 32 | ralbidva | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑧 ∈ ℙ ( ( 𝑧 ↑ 2 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ↔ ∀ 𝑧 ∈ ℙ ( 𝑧 ≤ ( √ ‘ 𝑃 ) → ¬ 𝑧 ∥ 𝑃 ) ) ) |
| 34 | 33 | pm5.32i | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℙ ( ( 𝑧 ↑ 2 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℙ ( 𝑧 ≤ ( √ ‘ 𝑃 ) → ¬ 𝑧 ∥ 𝑃 ) ) ) |
| 35 | impexp | ⊢ ( ( ( 𝑧 ∈ ℙ ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) → ¬ 𝑧 ∥ 𝑃 ) ↔ ( 𝑧 ∈ ℙ → ( 𝑧 ≤ ( √ ‘ 𝑃 ) → ¬ 𝑧 ∥ 𝑃 ) ) ) | |
| 36 | 12 19 | resqrtcld | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( √ ‘ 𝑃 ) ∈ ℝ ) |
| 37 | 36 | flcld | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ∈ ℤ ) |
| 38 | 37 2 | anim12i | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ℙ ) → ( ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) |
| 39 | 38 | adantr | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ℙ ) ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) → ( ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) |
| 40 | prmuz2 | ⊢ ( 𝑧 ∈ ℙ → 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 41 | eluzle | ⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → 2 ≤ 𝑧 ) | |
| 42 | 40 41 | syl | ⊢ ( 𝑧 ∈ ℙ → 2 ≤ 𝑧 ) |
| 43 | 42 | ad2antlr | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ℙ ) ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) → 2 ≤ 𝑧 ) |
| 44 | flge | ⊢ ( ( ( √ ‘ 𝑃 ) ∈ ℝ ∧ 𝑧 ∈ ℤ ) → ( 𝑧 ≤ ( √ ‘ 𝑃 ) ↔ 𝑧 ≤ ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) | |
| 45 | 36 2 44 | syl2an | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ℙ ) → ( 𝑧 ≤ ( √ ‘ 𝑃 ) ↔ 𝑧 ≤ ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) |
| 46 | 45 | biimpa | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ℙ ) ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) → 𝑧 ≤ ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) |
| 47 | 2z | ⊢ 2 ∈ ℤ | |
| 48 | elfz4 | ⊢ ( ( ( 2 ∈ ℤ ∧ ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) ∧ ( 2 ≤ 𝑧 ∧ 𝑧 ≤ ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) → 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) | |
| 49 | 47 48 | mp3anl1 | ⊢ ( ( ( ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) ∧ ( 2 ≤ 𝑧 ∧ 𝑧 ≤ ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) → 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) |
| 50 | 39 43 46 49 | syl12anc | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ℙ ) ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) → 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) |
| 51 | 50 | anasss | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) ) → 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) |
| 52 | simprl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) ) → 𝑧 ∈ ℙ ) | |
| 53 | 51 52 | elind | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) ) → 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) ) |
| 54 | 53 | ex | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑧 ∈ ℙ ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) → 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) ) ) |
| 55 | elin | ⊢ ( 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) ↔ ( 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∧ 𝑧 ∈ ℙ ) ) | |
| 56 | elfzelz | ⊢ ( 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) → 𝑧 ∈ ℤ ) | |
| 57 | 56 | zred | ⊢ ( 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) → 𝑧 ∈ ℝ ) |
| 58 | 57 | adantl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) → 𝑧 ∈ ℝ ) |
| 59 | reflcl | ⊢ ( ( √ ‘ 𝑃 ) ∈ ℝ → ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ∈ ℝ ) | |
| 60 | 36 59 | syl | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ∈ ℝ ) |
| 61 | 60 | adantr | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) → ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ∈ ℝ ) |
| 62 | 36 | adantr | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) → ( √ ‘ 𝑃 ) ∈ ℝ ) |
| 63 | elfzle2 | ⊢ ( 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) → 𝑧 ≤ ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) | |
| 64 | 63 | adantl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) → 𝑧 ≤ ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) |
| 65 | flle | ⊢ ( ( √ ‘ 𝑃 ) ∈ ℝ → ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ≤ ( √ ‘ 𝑃 ) ) | |
| 66 | 36 65 | syl | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ≤ ( √ ‘ 𝑃 ) ) |
| 67 | 66 | adantr | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) → ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ≤ ( √ ‘ 𝑃 ) ) |
| 68 | 58 61 62 64 67 | letrd | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) → 𝑧 ≤ ( √ ‘ 𝑃 ) ) |
| 69 | 68 | ex | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) → 𝑧 ≤ ( √ ‘ 𝑃 ) ) ) |
| 70 | 69 | anim1d | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∧ 𝑧 ∈ ℙ ) → ( 𝑧 ≤ ( √ ‘ 𝑃 ) ∧ 𝑧 ∈ ℙ ) ) ) |
| 71 | 55 70 | biimtrid | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) → ( 𝑧 ≤ ( √ ‘ 𝑃 ) ∧ 𝑧 ∈ ℙ ) ) ) |
| 72 | ancom | ⊢ ( ( 𝑧 ≤ ( √ ‘ 𝑃 ) ∧ 𝑧 ∈ ℙ ) ↔ ( 𝑧 ∈ ℙ ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) ) | |
| 73 | 71 72 | imbitrdi | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) → ( 𝑧 ∈ ℙ ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) ) ) |
| 74 | 54 73 | impbid | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑧 ∈ ℙ ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) ↔ 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) ) ) |
| 75 | 74 | imbi1d | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ( ( 𝑧 ∈ ℙ ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) → ¬ 𝑧 ∥ 𝑃 ) ↔ ( 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) → ¬ 𝑧 ∥ 𝑃 ) ) ) |
| 76 | 35 75 | bitr3id | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑧 ∈ ℙ → ( 𝑧 ≤ ( √ ‘ 𝑃 ) → ¬ 𝑧 ∥ 𝑃 ) ) ↔ ( 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) → ¬ 𝑧 ∥ 𝑃 ) ) ) |
| 77 | 76 | ralbidv2 | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑧 ∈ ℙ ( 𝑧 ≤ ( √ ‘ 𝑃 ) → ¬ 𝑧 ∥ 𝑃 ) ↔ ∀ 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) ¬ 𝑧 ∥ 𝑃 ) ) |
| 78 | 77 | pm5.32i | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℙ ( 𝑧 ≤ ( √ ‘ 𝑃 ) → ¬ 𝑧 ∥ 𝑃 ) ) ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) ¬ 𝑧 ∥ 𝑃 ) ) |
| 79 | 1 34 78 | 3bitri | ⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) ¬ 𝑧 ∥ 𝑃 ) ) |