This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lemma to assist theorems of || with no antecedents. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvds0lem | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 · 𝑀 ) = 𝑁 ) → 𝑀 ∥ 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝑥 = 𝐾 → ( 𝑥 · 𝑀 ) = ( 𝐾 · 𝑀 ) ) | |
| 2 | 1 | eqeq1d | ⊢ ( 𝑥 = 𝐾 → ( ( 𝑥 · 𝑀 ) = 𝑁 ↔ ( 𝐾 · 𝑀 ) = 𝑁 ) ) |
| 3 | 2 | rspcev | ⊢ ( ( 𝐾 ∈ ℤ ∧ ( 𝐾 · 𝑀 ) = 𝑁 ) → ∃ 𝑥 ∈ ℤ ( 𝑥 · 𝑀 ) = 𝑁 ) |
| 4 | 3 | adantl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 ∈ ℤ ∧ ( 𝐾 · 𝑀 ) = 𝑁 ) ) → ∃ 𝑥 ∈ ℤ ( 𝑥 · 𝑀 ) = 𝑁 ) |
| 5 | divides | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ∃ 𝑥 ∈ ℤ ( 𝑥 · 𝑀 ) = 𝑁 ) ) | |
| 6 | 5 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 ∈ ℤ ∧ ( 𝐾 · 𝑀 ) = 𝑁 ) ) → ( 𝑀 ∥ 𝑁 ↔ ∃ 𝑥 ∈ ℤ ( 𝑥 · 𝑀 ) = 𝑁 ) ) |
| 7 | 4 6 | mpbird | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 ∈ ℤ ∧ ( 𝐾 · 𝑀 ) = 𝑁 ) ) → 𝑀 ∥ 𝑁 ) |
| 8 | 7 | expr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐾 ∈ ℤ ) → ( ( 𝐾 · 𝑀 ) = 𝑁 → 𝑀 ∥ 𝑁 ) ) |
| 9 | 8 | 3impa | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( ( 𝐾 · 𝑀 ) = 𝑁 → 𝑀 ∥ 𝑁 ) ) |
| 10 | 9 | 3comr | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 · 𝑀 ) = 𝑁 → 𝑀 ∥ 𝑁 ) ) |
| 11 | 10 | imp | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 · 𝑀 ) = 𝑁 ) → 𝑀 ∥ 𝑁 ) |