This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 with no divisors strictly between 1 and itself. (Contributed by Paul Chapman, 26-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isprm3 | |- ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. ( 2 ... ( P - 1 ) ) -. z || P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprm2 | |- ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) ) ) |
|
| 2 | iman | |- ( ( z e. NN -> ( z = 1 \/ z = P ) ) <-> -. ( z e. NN /\ -. ( z = 1 \/ z = P ) ) ) |
|
| 3 | eluz2nn | |- ( P e. ( ZZ>= ` 2 ) -> P e. NN ) |
|
| 4 | nnz | |- ( z e. NN -> z e. ZZ ) |
|
| 5 | dvdsle | |- ( ( z e. ZZ /\ P e. NN ) -> ( z || P -> z <_ P ) ) |
|
| 6 | 4 5 | sylan | |- ( ( z e. NN /\ P e. NN ) -> ( z || P -> z <_ P ) ) |
| 7 | nnge1 | |- ( z e. NN -> 1 <_ z ) |
|
| 8 | 7 | adantr | |- ( ( z e. NN /\ P e. NN ) -> 1 <_ z ) |
| 9 | 6 8 | jctild | |- ( ( z e. NN /\ P e. NN ) -> ( z || P -> ( 1 <_ z /\ z <_ P ) ) ) |
| 10 | 3 9 | sylan2 | |- ( ( z e. NN /\ P e. ( ZZ>= ` 2 ) ) -> ( z || P -> ( 1 <_ z /\ z <_ P ) ) ) |
| 11 | zre | |- ( z e. ZZ -> z e. RR ) |
|
| 12 | nnre | |- ( P e. NN -> P e. RR ) |
|
| 13 | 1re | |- 1 e. RR |
|
| 14 | leltne | |- ( ( 1 e. RR /\ z e. RR /\ 1 <_ z ) -> ( 1 < z <-> z =/= 1 ) ) |
|
| 15 | 13 14 | mp3an1 | |- ( ( z e. RR /\ 1 <_ z ) -> ( 1 < z <-> z =/= 1 ) ) |
| 16 | 15 | 3adant2 | |- ( ( z e. RR /\ P e. RR /\ 1 <_ z ) -> ( 1 < z <-> z =/= 1 ) ) |
| 17 | 16 | 3expia | |- ( ( z e. RR /\ P e. RR ) -> ( 1 <_ z -> ( 1 < z <-> z =/= 1 ) ) ) |
| 18 | leltne | |- ( ( z e. RR /\ P e. RR /\ z <_ P ) -> ( z < P <-> P =/= z ) ) |
|
| 19 | 18 | 3expia | |- ( ( z e. RR /\ P e. RR ) -> ( z <_ P -> ( z < P <-> P =/= z ) ) ) |
| 20 | 17 19 | anim12d | |- ( ( z e. RR /\ P e. RR ) -> ( ( 1 <_ z /\ z <_ P ) -> ( ( 1 < z <-> z =/= 1 ) /\ ( z < P <-> P =/= z ) ) ) ) |
| 21 | 11 12 20 | syl2an | |- ( ( z e. ZZ /\ P e. NN ) -> ( ( 1 <_ z /\ z <_ P ) -> ( ( 1 < z <-> z =/= 1 ) /\ ( z < P <-> P =/= z ) ) ) ) |
| 22 | pm4.38 | |- ( ( ( 1 < z <-> z =/= 1 ) /\ ( z < P <-> P =/= z ) ) -> ( ( 1 < z /\ z < P ) <-> ( z =/= 1 /\ P =/= z ) ) ) |
|
| 23 | df-ne | |- ( z =/= 1 <-> -. z = 1 ) |
|
| 24 | nesym | |- ( P =/= z <-> -. z = P ) |
|
| 25 | 23 24 | anbi12i | |- ( ( z =/= 1 /\ P =/= z ) <-> ( -. z = 1 /\ -. z = P ) ) |
| 26 | ioran | |- ( -. ( z = 1 \/ z = P ) <-> ( -. z = 1 /\ -. z = P ) ) |
|
| 27 | 25 26 | bitr4i | |- ( ( z =/= 1 /\ P =/= z ) <-> -. ( z = 1 \/ z = P ) ) |
| 28 | 22 27 | bitrdi | |- ( ( ( 1 < z <-> z =/= 1 ) /\ ( z < P <-> P =/= z ) ) -> ( ( 1 < z /\ z < P ) <-> -. ( z = 1 \/ z = P ) ) ) |
| 29 | 21 28 | syl6 | |- ( ( z e. ZZ /\ P e. NN ) -> ( ( 1 <_ z /\ z <_ P ) -> ( ( 1 < z /\ z < P ) <-> -. ( z = 1 \/ z = P ) ) ) ) |
| 30 | 4 3 29 | syl2an | |- ( ( z e. NN /\ P e. ( ZZ>= ` 2 ) ) -> ( ( 1 <_ z /\ z <_ P ) -> ( ( 1 < z /\ z < P ) <-> -. ( z = 1 \/ z = P ) ) ) ) |
| 31 | 10 30 | syld | |- ( ( z e. NN /\ P e. ( ZZ>= ` 2 ) ) -> ( z || P -> ( ( 1 < z /\ z < P ) <-> -. ( z = 1 \/ z = P ) ) ) ) |
| 32 | 31 | imp | |- ( ( ( z e. NN /\ P e. ( ZZ>= ` 2 ) ) /\ z || P ) -> ( ( 1 < z /\ z < P ) <-> -. ( z = 1 \/ z = P ) ) ) |
| 33 | eluzelz | |- ( P e. ( ZZ>= ` 2 ) -> P e. ZZ ) |
|
| 34 | 1z | |- 1 e. ZZ |
|
| 35 | zltp1le | |- ( ( 1 e. ZZ /\ z e. ZZ ) -> ( 1 < z <-> ( 1 + 1 ) <_ z ) ) |
|
| 36 | 34 35 | mpan | |- ( z e. ZZ -> ( 1 < z <-> ( 1 + 1 ) <_ z ) ) |
| 37 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 38 | 37 | breq1i | |- ( 2 <_ z <-> ( 1 + 1 ) <_ z ) |
| 39 | 36 38 | bitr4di | |- ( z e. ZZ -> ( 1 < z <-> 2 <_ z ) ) |
| 40 | 39 | adantr | |- ( ( z e. ZZ /\ P e. ZZ ) -> ( 1 < z <-> 2 <_ z ) ) |
| 41 | zltlem1 | |- ( ( z e. ZZ /\ P e. ZZ ) -> ( z < P <-> z <_ ( P - 1 ) ) ) |
|
| 42 | 40 41 | anbi12d | |- ( ( z e. ZZ /\ P e. ZZ ) -> ( ( 1 < z /\ z < P ) <-> ( 2 <_ z /\ z <_ ( P - 1 ) ) ) ) |
| 43 | peano2zm | |- ( P e. ZZ -> ( P - 1 ) e. ZZ ) |
|
| 44 | 2z | |- 2 e. ZZ |
|
| 45 | elfz | |- ( ( z e. ZZ /\ 2 e. ZZ /\ ( P - 1 ) e. ZZ ) -> ( z e. ( 2 ... ( P - 1 ) ) <-> ( 2 <_ z /\ z <_ ( P - 1 ) ) ) ) |
|
| 46 | 44 45 | mp3an2 | |- ( ( z e. ZZ /\ ( P - 1 ) e. ZZ ) -> ( z e. ( 2 ... ( P - 1 ) ) <-> ( 2 <_ z /\ z <_ ( P - 1 ) ) ) ) |
| 47 | 43 46 | sylan2 | |- ( ( z e. ZZ /\ P e. ZZ ) -> ( z e. ( 2 ... ( P - 1 ) ) <-> ( 2 <_ z /\ z <_ ( P - 1 ) ) ) ) |
| 48 | 42 47 | bitr4d | |- ( ( z e. ZZ /\ P e. ZZ ) -> ( ( 1 < z /\ z < P ) <-> z e. ( 2 ... ( P - 1 ) ) ) ) |
| 49 | 4 33 48 | syl2an | |- ( ( z e. NN /\ P e. ( ZZ>= ` 2 ) ) -> ( ( 1 < z /\ z < P ) <-> z e. ( 2 ... ( P - 1 ) ) ) ) |
| 50 | 49 | adantr | |- ( ( ( z e. NN /\ P e. ( ZZ>= ` 2 ) ) /\ z || P ) -> ( ( 1 < z /\ z < P ) <-> z e. ( 2 ... ( P - 1 ) ) ) ) |
| 51 | 32 50 | bitr3d | |- ( ( ( z e. NN /\ P e. ( ZZ>= ` 2 ) ) /\ z || P ) -> ( -. ( z = 1 \/ z = P ) <-> z e. ( 2 ... ( P - 1 ) ) ) ) |
| 52 | 51 | anasss | |- ( ( z e. NN /\ ( P e. ( ZZ>= ` 2 ) /\ z || P ) ) -> ( -. ( z = 1 \/ z = P ) <-> z e. ( 2 ... ( P - 1 ) ) ) ) |
| 53 | 52 | expcom | |- ( ( P e. ( ZZ>= ` 2 ) /\ z || P ) -> ( z e. NN -> ( -. ( z = 1 \/ z = P ) <-> z e. ( 2 ... ( P - 1 ) ) ) ) ) |
| 54 | 53 | pm5.32d | |- ( ( P e. ( ZZ>= ` 2 ) /\ z || P ) -> ( ( z e. NN /\ -. ( z = 1 \/ z = P ) ) <-> ( z e. NN /\ z e. ( 2 ... ( P - 1 ) ) ) ) ) |
| 55 | fzssuz | |- ( 2 ... ( P - 1 ) ) C_ ( ZZ>= ` 2 ) |
|
| 56 | 2eluzge1 | |- 2 e. ( ZZ>= ` 1 ) |
|
| 57 | uzss | |- ( 2 e. ( ZZ>= ` 1 ) -> ( ZZ>= ` 2 ) C_ ( ZZ>= ` 1 ) ) |
|
| 58 | 56 57 | ax-mp | |- ( ZZ>= ` 2 ) C_ ( ZZ>= ` 1 ) |
| 59 | 55 58 | sstri | |- ( 2 ... ( P - 1 ) ) C_ ( ZZ>= ` 1 ) |
| 60 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 61 | 59 60 | sseqtrri | |- ( 2 ... ( P - 1 ) ) C_ NN |
| 62 | 61 | sseli | |- ( z e. ( 2 ... ( P - 1 ) ) -> z e. NN ) |
| 63 | 62 | pm4.71ri | |- ( z e. ( 2 ... ( P - 1 ) ) <-> ( z e. NN /\ z e. ( 2 ... ( P - 1 ) ) ) ) |
| 64 | 54 63 | bitr4di | |- ( ( P e. ( ZZ>= ` 2 ) /\ z || P ) -> ( ( z e. NN /\ -. ( z = 1 \/ z = P ) ) <-> z e. ( 2 ... ( P - 1 ) ) ) ) |
| 65 | 64 | notbid | |- ( ( P e. ( ZZ>= ` 2 ) /\ z || P ) -> ( -. ( z e. NN /\ -. ( z = 1 \/ z = P ) ) <-> -. z e. ( 2 ... ( P - 1 ) ) ) ) |
| 66 | 2 65 | bitrid | |- ( ( P e. ( ZZ>= ` 2 ) /\ z || P ) -> ( ( z e. NN -> ( z = 1 \/ z = P ) ) <-> -. z e. ( 2 ... ( P - 1 ) ) ) ) |
| 67 | 66 | pm5.74da | |- ( P e. ( ZZ>= ` 2 ) -> ( ( z || P -> ( z e. NN -> ( z = 1 \/ z = P ) ) ) <-> ( z || P -> -. z e. ( 2 ... ( P - 1 ) ) ) ) ) |
| 68 | bi2.04 | |- ( ( z || P -> ( z e. NN -> ( z = 1 \/ z = P ) ) ) <-> ( z e. NN -> ( z || P -> ( z = 1 \/ z = P ) ) ) ) |
|
| 69 | con2b | |- ( ( z || P -> -. z e. ( 2 ... ( P - 1 ) ) ) <-> ( z e. ( 2 ... ( P - 1 ) ) -> -. z || P ) ) |
|
| 70 | 67 68 69 | 3bitr3g | |- ( P e. ( ZZ>= ` 2 ) -> ( ( z e. NN -> ( z || P -> ( z = 1 \/ z = P ) ) ) <-> ( z e. ( 2 ... ( P - 1 ) ) -> -. z || P ) ) ) |
| 71 | 70 | ralbidv2 | |- ( P e. ( ZZ>= ` 2 ) -> ( A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) <-> A. z e. ( 2 ... ( P - 1 ) ) -. z || P ) ) |
| 72 | 71 | pm5.32i | |- ( ( P e. ( ZZ>= ` 2 ) /\ A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) ) <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. ( 2 ... ( P - 1 ) ) -. z || P ) ) |
| 73 | 1 72 | bitri | |- ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. ( 2 ... ( P - 1 ) ) -. z || P ) ) |