This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A linear subspace of a module is a subset which is a module in its own right. (Contributed by Stefan O'Rear, 6-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islss3.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| islss3.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| islss3.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| Assertion | islss3 | ⊢ ( 𝑊 ∈ LMod → ( 𝑈 ∈ 𝑆 ↔ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islss3.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| 2 | islss3.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | islss3.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 4 | 2 3 | lssss | ⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉 ) |
| 5 | 4 | adantl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ⊆ 𝑉 ) |
| 6 | 1 2 | ressbas2 | ⊢ ( 𝑈 ⊆ 𝑉 → 𝑈 = ( Base ‘ 𝑋 ) ) |
| 7 | 6 | adantl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
| 8 | 4 7 | sylan2 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
| 9 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 10 | 1 9 | ressplusg | ⊢ ( 𝑈 ∈ 𝑆 → ( +g ‘ 𝑊 ) = ( +g ‘ 𝑋 ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( +g ‘ 𝑊 ) = ( +g ‘ 𝑋 ) ) |
| 12 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 13 | 1 12 | resssca | ⊢ ( 𝑈 ∈ 𝑆 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
| 14 | 13 | adantl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
| 15 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 16 | 1 15 | ressvsca | ⊢ ( 𝑈 ∈ 𝑆 → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑋 ) ) |
| 17 | 16 | adantl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑋 ) ) |
| 18 | eqidd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 19 | eqidd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 20 | eqidd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 21 | eqidd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 22 | 12 | lmodring | ⊢ ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) ∈ Ring ) |
| 23 | 22 | adantr | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑊 ) ∈ Ring ) |
| 24 | 3 | lsssubg | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 25 | 1 | subggrp | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) → 𝑋 ∈ Grp ) |
| 26 | 24 25 | syl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ Grp ) |
| 27 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 28 | 12 15 27 3 | lssvscl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑈 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ∈ 𝑈 ) |
| 29 | 28 | 3impb | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑈 ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ∈ 𝑈 ) |
| 30 | simpll | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑊 ∈ LMod ) | |
| 31 | simpr1 | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 32 | 4 | ad2antlr | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑈 ⊆ 𝑉 ) |
| 33 | simpr2 | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑎 ∈ 𝑈 ) | |
| 34 | 32 33 | sseldd | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑎 ∈ 𝑉 ) |
| 35 | simpr3 | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑏 ∈ 𝑈 ) | |
| 36 | 32 35 | sseldd | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑏 ∈ 𝑉 ) |
| 37 | 2 9 12 15 27 | lmodvsdi | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑎 ( +g ‘ 𝑊 ) 𝑏 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑏 ) ) ) |
| 38 | 30 31 34 36 37 | syl13anc | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑎 ( +g ‘ 𝑊 ) 𝑏 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑏 ) ) ) |
| 39 | simpll | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑏 ∈ 𝑈 ) ) → 𝑊 ∈ LMod ) | |
| 40 | simpr1 | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑏 ∈ 𝑈 ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 41 | simpr2 | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑏 ∈ 𝑈 ) ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 42 | 4 | ad2antlr | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑏 ∈ 𝑈 ) ) → 𝑈 ⊆ 𝑉 ) |
| 43 | simpr3 | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑏 ∈ 𝑈 ) ) → 𝑏 ∈ 𝑈 ) | |
| 44 | 42 43 | sseldd | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑏 ∈ 𝑈 ) ) → 𝑏 ∈ 𝑉 ) |
| 45 | eqid | ⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 46 | 2 9 12 15 27 45 | lmodvsdir | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑎 ) ( ·𝑠 ‘ 𝑊 ) 𝑏 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑏 ) ( +g ‘ 𝑊 ) ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑏 ) ) ) |
| 47 | 39 40 41 44 46 | syl13anc | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑏 ∈ 𝑈 ) ) → ( ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑎 ) ( ·𝑠 ‘ 𝑊 ) 𝑏 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑏 ) ( +g ‘ 𝑊 ) ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑏 ) ) ) |
| 48 | eqid | ⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) | |
| 49 | 2 12 15 27 48 | lmodvsass | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝑥 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑎 ) ( ·𝑠 ‘ 𝑊 ) 𝑏 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑏 ) ) ) |
| 50 | 39 40 41 44 49 | syl13anc | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑏 ∈ 𝑈 ) ) → ( ( 𝑥 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑎 ) ( ·𝑠 ‘ 𝑊 ) 𝑏 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑏 ) ) ) |
| 51 | 5 | sselda | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ 𝑉 ) |
| 52 | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) | |
| 53 | 2 12 15 52 | lmodvs1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ 𝑉 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑥 ) = 𝑥 ) |
| 54 | 53 | adantlr | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑥 ) = 𝑥 ) |
| 55 | 51 54 | syldan | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑥 ) = 𝑥 ) |
| 56 | 8 11 14 17 18 19 20 21 23 26 29 38 47 50 55 | islmodd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ LMod ) |
| 57 | 5 56 | jca | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) |
| 58 | simprl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → 𝑈 ⊆ 𝑉 ) | |
| 59 | 58 6 | syl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
| 60 | fvex | ⊢ ( Base ‘ 𝑋 ) ∈ V | |
| 61 | 59 60 | eqeltrdi | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → 𝑈 ∈ V ) |
| 62 | 1 12 | resssca | ⊢ ( 𝑈 ∈ V → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
| 63 | 61 62 | syl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
| 64 | 63 | eqcomd | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑊 ) ) |
| 65 | eqidd | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → ( Base ‘ ( Scalar ‘ 𝑋 ) ) = ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) | |
| 66 | 2 | a1i | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → 𝑉 = ( Base ‘ 𝑊 ) ) |
| 67 | 1 9 | ressplusg | ⊢ ( 𝑈 ∈ V → ( +g ‘ 𝑊 ) = ( +g ‘ 𝑋 ) ) |
| 68 | 61 67 | syl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → ( +g ‘ 𝑊 ) = ( +g ‘ 𝑋 ) ) |
| 69 | 68 | eqcomd | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → ( +g ‘ 𝑋 ) = ( +g ‘ 𝑊 ) ) |
| 70 | 1 15 | ressvsca | ⊢ ( 𝑈 ∈ V → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑋 ) ) |
| 71 | 61 70 | syl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑋 ) ) |
| 72 | 71 | eqcomd | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → ( ·𝑠 ‘ 𝑋 ) = ( ·𝑠 ‘ 𝑊 ) ) |
| 73 | 3 | a1i | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → 𝑆 = ( LSubSp ‘ 𝑊 ) ) |
| 74 | 59 58 | eqsstrrd | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → ( Base ‘ 𝑋 ) ⊆ 𝑉 ) |
| 75 | lmodgrp | ⊢ ( 𝑋 ∈ LMod → 𝑋 ∈ Grp ) | |
| 76 | 75 | ad2antll | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → 𝑋 ∈ Grp ) |
| 77 | eqid | ⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) | |
| 78 | 77 | grpbn0 | ⊢ ( 𝑋 ∈ Grp → ( Base ‘ 𝑋 ) ≠ ∅ ) |
| 79 | 76 78 | syl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → ( Base ‘ 𝑋 ) ≠ ∅ ) |
| 80 | eqid | ⊢ ( LSubSp ‘ 𝑋 ) = ( LSubSp ‘ 𝑋 ) | |
| 81 | 77 80 | lss1 | ⊢ ( 𝑋 ∈ LMod → ( Base ‘ 𝑋 ) ∈ ( LSubSp ‘ 𝑋 ) ) |
| 82 | 81 | ad2antll | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → ( Base ‘ 𝑋 ) ∈ ( LSubSp ‘ 𝑋 ) ) |
| 83 | eqid | ⊢ ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑋 ) | |
| 84 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑋 ) ) = ( Base ‘ ( Scalar ‘ 𝑋 ) ) | |
| 85 | eqid | ⊢ ( +g ‘ 𝑋 ) = ( +g ‘ 𝑋 ) | |
| 86 | eqid | ⊢ ( ·𝑠 ‘ 𝑋 ) = ( ·𝑠 ‘ 𝑋 ) | |
| 87 | 83 84 85 86 80 | lsscl | ⊢ ( ( ( Base ‘ 𝑋 ) ∈ ( LSubSp ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑋 ) ∧ 𝑏 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑋 ) 𝑎 ) ( +g ‘ 𝑋 ) 𝑏 ) ∈ ( Base ‘ 𝑋 ) ) |
| 88 | 82 87 | sylan | ⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑋 ) ∧ 𝑏 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑋 ) 𝑎 ) ( +g ‘ 𝑋 ) 𝑏 ) ∈ ( Base ‘ 𝑋 ) ) |
| 89 | 64 65 66 69 72 73 74 79 88 | islssd | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → ( Base ‘ 𝑋 ) ∈ 𝑆 ) |
| 90 | 59 89 | eqeltrd | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → 𝑈 ∈ 𝑆 ) |
| 91 | 57 90 | impbida | ⊢ ( 𝑊 ∈ LMod → ( 𝑈 ∈ 𝑆 ↔ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) ) |