This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for scalar product (right-distributivity). ( ax-hvdistr1 analog.) (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 22-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodvsdir.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lmodvsdir.a | ⊢ + = ( +g ‘ 𝑊 ) | ||
| lmodvsdir.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lmodvsdir.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lmodvsdir.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| lmodvsdir.p | ⊢ ⨣ = ( +g ‘ 𝐹 ) | ||
| Assertion | lmodvsdir | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑄 ⨣ 𝑅 ) · 𝑋 ) = ( ( 𝑄 · 𝑋 ) + ( 𝑅 · 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvsdir.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lmodvsdir.a | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | lmodvsdir.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | lmodvsdir.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 5 | lmodvsdir.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 6 | lmodvsdir.p | ⊢ ⨣ = ( +g ‘ 𝐹 ) | |
| 7 | eqid | ⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) | |
| 8 | eqid | ⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) | |
| 9 | 1 2 4 3 5 6 7 8 | lmodlema | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( ( 𝑅 · 𝑋 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑋 + 𝑋 ) ) = ( ( 𝑅 · 𝑋 ) + ( 𝑅 · 𝑋 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑋 ) = ( ( 𝑄 · 𝑋 ) + ( 𝑅 · 𝑋 ) ) ) ∧ ( ( ( 𝑄 ( .r ‘ 𝐹 ) 𝑅 ) · 𝑋 ) = ( 𝑄 · ( 𝑅 · 𝑋 ) ) ∧ ( ( 1r ‘ 𝐹 ) · 𝑋 ) = 𝑋 ) ) ) |
| 10 | 9 | simpld | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑅 · 𝑋 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑋 + 𝑋 ) ) = ( ( 𝑅 · 𝑋 ) + ( 𝑅 · 𝑋 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑋 ) = ( ( 𝑄 · 𝑋 ) + ( 𝑅 · 𝑋 ) ) ) ) |
| 11 | 10 | simp3d | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑄 ⨣ 𝑅 ) · 𝑋 ) = ( ( 𝑄 · 𝑋 ) + ( 𝑅 · 𝑋 ) ) ) |
| 12 | 11 | 3expa | ⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑄 ⨣ 𝑅 ) · 𝑋 ) = ( ( 𝑄 · 𝑋 ) + ( 𝑅 · 𝑋 ) ) ) |
| 13 | 12 | anabsan2 | ⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ) ) ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑄 ⨣ 𝑅 ) · 𝑋 ) = ( ( 𝑄 · 𝑋 ) + ( 𝑅 · 𝑋 ) ) ) |
| 14 | 13 | exp42 | ⊢ ( 𝑊 ∈ LMod → ( 𝑄 ∈ 𝐾 → ( 𝑅 ∈ 𝐾 → ( 𝑋 ∈ 𝑉 → ( ( 𝑄 ⨣ 𝑅 ) · 𝑋 ) = ( ( 𝑄 · 𝑋 ) + ( 𝑅 · 𝑋 ) ) ) ) ) ) |
| 15 | 14 | 3imp2 | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑄 ⨣ 𝑅 ) · 𝑋 ) = ( ( 𝑄 · 𝑋 ) + ( 𝑅 · 𝑋 ) ) ) |