This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of vectors in a left module is a subspace. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lssss.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| Assertion | lss1 | ⊢ ( 𝑊 ∈ LMod → 𝑉 ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lssss.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | eqidd | ⊢ ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ) | |
| 4 | eqidd | ⊢ ( 𝑊 ∈ LMod → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 5 | 1 | a1i | ⊢ ( 𝑊 ∈ LMod → 𝑉 = ( Base ‘ 𝑊 ) ) |
| 6 | eqidd | ⊢ ( 𝑊 ∈ LMod → ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) ) | |
| 7 | eqidd | ⊢ ( 𝑊 ∈ LMod → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) ) | |
| 8 | 2 | a1i | ⊢ ( 𝑊 ∈ LMod → 𝑆 = ( LSubSp ‘ 𝑊 ) ) |
| 9 | ssidd | ⊢ ( 𝑊 ∈ LMod → 𝑉 ⊆ 𝑉 ) | |
| 10 | 1 | lmodbn0 | ⊢ ( 𝑊 ∈ LMod → 𝑉 ≠ ∅ ) |
| 11 | simpl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑊 ∈ LMod ) | |
| 12 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 13 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 14 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 15 | 1 12 13 14 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑉 ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ∈ 𝑉 ) |
| 16 | 15 | 3adant3r3 | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ∈ 𝑉 ) |
| 17 | simpr3 | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑏 ∈ 𝑉 ) | |
| 18 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 19 | 1 18 | lmodvacl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ 𝑉 ) |
| 20 | 11 16 17 19 | syl3anc | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ 𝑉 ) |
| 21 | 3 4 5 6 7 8 9 10 20 | islssd | ⊢ ( 𝑊 ∈ LMod → 𝑉 ∈ 𝑆 ) |