This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure property of a subspace. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 8-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsscl.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| lsscl.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | ||
| lsscl.p | ⊢ + = ( +g ‘ 𝑊 ) | ||
| lsscl.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lsscl.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| Assertion | lsscl | ⊢ ( ( 𝑈 ∈ 𝑆 ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → ( ( 𝑍 · 𝑋 ) + 𝑌 ) ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsscl.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | lsscl.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | |
| 3 | lsscl.p | ⊢ + = ( +g ‘ 𝑊 ) | |
| 4 | lsscl.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 5 | lsscl.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 7 | 1 2 6 3 4 5 | islss | ⊢ ( 𝑈 ∈ 𝑆 ↔ ( 𝑈 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) |
| 8 | 7 | simp3bi | ⊢ ( 𝑈 ∈ 𝑆 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) |
| 9 | oveq1 | ⊢ ( 𝑥 = 𝑍 → ( 𝑥 · 𝑎 ) = ( 𝑍 · 𝑎 ) ) | |
| 10 | 9 | oveq1d | ⊢ ( 𝑥 = 𝑍 → ( ( 𝑥 · 𝑎 ) + 𝑏 ) = ( ( 𝑍 · 𝑎 ) + 𝑏 ) ) |
| 11 | 10 | eleq1d | ⊢ ( 𝑥 = 𝑍 → ( ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ↔ ( ( 𝑍 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) |
| 12 | oveq2 | ⊢ ( 𝑎 = 𝑋 → ( 𝑍 · 𝑎 ) = ( 𝑍 · 𝑋 ) ) | |
| 13 | 12 | oveq1d | ⊢ ( 𝑎 = 𝑋 → ( ( 𝑍 · 𝑎 ) + 𝑏 ) = ( ( 𝑍 · 𝑋 ) + 𝑏 ) ) |
| 14 | 13 | eleq1d | ⊢ ( 𝑎 = 𝑋 → ( ( ( 𝑍 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ↔ ( ( 𝑍 · 𝑋 ) + 𝑏 ) ∈ 𝑈 ) ) |
| 15 | oveq2 | ⊢ ( 𝑏 = 𝑌 → ( ( 𝑍 · 𝑋 ) + 𝑏 ) = ( ( 𝑍 · 𝑋 ) + 𝑌 ) ) | |
| 16 | 15 | eleq1d | ⊢ ( 𝑏 = 𝑌 → ( ( ( 𝑍 · 𝑋 ) + 𝑏 ) ∈ 𝑈 ↔ ( ( 𝑍 · 𝑋 ) + 𝑌 ) ∈ 𝑈 ) ) |
| 17 | 11 14 16 | rspc3v | ⊢ ( ( 𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 → ( ( 𝑍 · 𝑋 ) + 𝑌 ) ∈ 𝑈 ) ) |
| 18 | 8 17 | mpan9 | ⊢ ( ( 𝑈 ∈ 𝑆 ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → ( ( 𝑍 · 𝑋 ) + 𝑌 ) ∈ 𝑈 ) |