This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a left module. See note in isgrpd2 regarding the ph on hypotheses that name structure components. (Contributed by Mario Carneiro, 22-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islmodd.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑊 ) ) | |
| islmodd.a | ⊢ ( 𝜑 → + = ( +g ‘ 𝑊 ) ) | ||
| islmodd.f | ⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝑊 ) ) | ||
| islmodd.s | ⊢ ( 𝜑 → · = ( ·𝑠 ‘ 𝑊 ) ) | ||
| islmodd.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐹 ) ) | ||
| islmodd.p | ⊢ ( 𝜑 → ⨣ = ( +g ‘ 𝐹 ) ) | ||
| islmodd.t | ⊢ ( 𝜑 → × = ( .r ‘ 𝐹 ) ) | ||
| islmodd.u | ⊢ ( 𝜑 → 1 = ( 1r ‘ 𝐹 ) ) | ||
| islmodd.r | ⊢ ( 𝜑 → 𝐹 ∈ Ring ) | ||
| islmodd.l | ⊢ ( 𝜑 → 𝑊 ∈ Grp ) | ||
| islmodd.w | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 · 𝑦 ) ∈ 𝑉 ) | ||
| islmodd.c | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) | ||
| islmodd.d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 ⨣ 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) | ||
| islmodd.e | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 × 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) | ||
| islmodd.g | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 1 · 𝑥 ) = 𝑥 ) | ||
| Assertion | islmodd | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islmodd.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑊 ) ) | |
| 2 | islmodd.a | ⊢ ( 𝜑 → + = ( +g ‘ 𝑊 ) ) | |
| 3 | islmodd.f | ⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝑊 ) ) | |
| 4 | islmodd.s | ⊢ ( 𝜑 → · = ( ·𝑠 ‘ 𝑊 ) ) | |
| 5 | islmodd.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐹 ) ) | |
| 6 | islmodd.p | ⊢ ( 𝜑 → ⨣ = ( +g ‘ 𝐹 ) ) | |
| 7 | islmodd.t | ⊢ ( 𝜑 → × = ( .r ‘ 𝐹 ) ) | |
| 8 | islmodd.u | ⊢ ( 𝜑 → 1 = ( 1r ‘ 𝐹 ) ) | |
| 9 | islmodd.r | ⊢ ( 𝜑 → 𝐹 ∈ Ring ) | |
| 10 | islmodd.l | ⊢ ( 𝜑 → 𝑊 ∈ Grp ) | |
| 11 | islmodd.w | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 · 𝑦 ) ∈ 𝑉 ) | |
| 12 | islmodd.c | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) | |
| 13 | islmodd.d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 ⨣ 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) | |
| 14 | islmodd.e | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 × 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) | |
| 15 | islmodd.g | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 1 · 𝑥 ) = 𝑥 ) | |
| 16 | 3 9 | eqeltrrd | ⊢ ( 𝜑 → ( Scalar ‘ 𝑊 ) ∈ Ring ) |
| 17 | 11 | 3expb | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑉 ) |
| 18 | 17 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑉 ( 𝑥 · 𝑦 ) ∈ 𝑉 ) |
| 19 | oveq1 | ⊢ ( 𝑥 = 𝑟 → ( 𝑥 · 𝑦 ) = ( 𝑟 · 𝑦 ) ) | |
| 20 | 19 | eleq1d | ⊢ ( 𝑥 = 𝑟 → ( ( 𝑥 · 𝑦 ) ∈ 𝑉 ↔ ( 𝑟 · 𝑦 ) ∈ 𝑉 ) ) |
| 21 | oveq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑟 · 𝑦 ) = ( 𝑟 · 𝑤 ) ) | |
| 22 | 21 | eleq1d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑟 · 𝑦 ) ∈ 𝑉 ↔ ( 𝑟 · 𝑤 ) ∈ 𝑉 ) ) |
| 23 | 20 22 | rspc2v | ⊢ ( ( 𝑟 ∈ 𝐵 ∧ 𝑤 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑉 ( 𝑥 · 𝑦 ) ∈ 𝑉 → ( 𝑟 · 𝑤 ) ∈ 𝑉 ) ) |
| 24 | 23 | ad2ant2l | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑉 ( 𝑥 · 𝑦 ) ∈ 𝑉 → ( 𝑟 · 𝑤 ) ∈ 𝑉 ) ) |
| 25 | 18 24 | mpan9 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) ) → ( 𝑟 · 𝑤 ) ∈ 𝑉 ) |
| 26 | 12 | ralrimivvva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑉 ∀ 𝑧 ∈ 𝑉 ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
| 27 | oveq1 | ⊢ ( 𝑥 = 𝑟 → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( 𝑟 · ( 𝑦 + 𝑧 ) ) ) | |
| 28 | oveq1 | ⊢ ( 𝑥 = 𝑟 → ( 𝑥 · 𝑧 ) = ( 𝑟 · 𝑧 ) ) | |
| 29 | 19 28 | oveq12d | ⊢ ( 𝑥 = 𝑟 → ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) = ( ( 𝑟 · 𝑦 ) + ( 𝑟 · 𝑧 ) ) ) |
| 30 | 27 29 | eqeq12d | ⊢ ( 𝑥 = 𝑟 → ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ↔ ( 𝑟 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑟 · 𝑦 ) + ( 𝑟 · 𝑧 ) ) ) ) |
| 31 | oveq1 | ⊢ ( 𝑦 = 𝑤 → ( 𝑦 + 𝑧 ) = ( 𝑤 + 𝑧 ) ) | |
| 32 | 31 | oveq2d | ⊢ ( 𝑦 = 𝑤 → ( 𝑟 · ( 𝑦 + 𝑧 ) ) = ( 𝑟 · ( 𝑤 + 𝑧 ) ) ) |
| 33 | 21 | oveq1d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑟 · 𝑦 ) + ( 𝑟 · 𝑧 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑧 ) ) ) |
| 34 | 32 33 | eqeq12d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑟 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑟 · 𝑦 ) + ( 𝑟 · 𝑧 ) ) ↔ ( 𝑟 · ( 𝑤 + 𝑧 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑧 ) ) ) ) |
| 35 | oveq2 | ⊢ ( 𝑧 = 𝑢 → ( 𝑤 + 𝑧 ) = ( 𝑤 + 𝑢 ) ) | |
| 36 | 35 | oveq2d | ⊢ ( 𝑧 = 𝑢 → ( 𝑟 · ( 𝑤 + 𝑧 ) ) = ( 𝑟 · ( 𝑤 + 𝑢 ) ) ) |
| 37 | oveq2 | ⊢ ( 𝑧 = 𝑢 → ( 𝑟 · 𝑧 ) = ( 𝑟 · 𝑢 ) ) | |
| 38 | 37 | oveq2d | ⊢ ( 𝑧 = 𝑢 → ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑧 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ) |
| 39 | 36 38 | eqeq12d | ⊢ ( 𝑧 = 𝑢 → ( ( 𝑟 · ( 𝑤 + 𝑧 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑧 ) ) ↔ ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ) ) |
| 40 | 30 34 39 | rspc3v | ⊢ ( ( 𝑟 ∈ 𝐵 ∧ 𝑤 ∈ 𝑉 ∧ 𝑢 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑉 ∀ 𝑧 ∈ 𝑉 ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) → ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ) ) |
| 41 | 40 | 3com23 | ⊢ ( ( 𝑟 ∈ 𝐵 ∧ 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑉 ∀ 𝑧 ∈ 𝑉 ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) → ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ) ) |
| 42 | 41 | 3expb | ⊢ ( ( 𝑟 ∈ 𝐵 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑉 ∀ 𝑧 ∈ 𝑉 ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) → ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ) ) |
| 43 | 42 | adantll | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑉 ∀ 𝑧 ∈ 𝑉 ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) → ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ) ) |
| 44 | 26 43 | mpan9 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) ) → ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ) |
| 45 | simpll | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) → 𝑥 ∈ 𝐵 ) | |
| 46 | 13 | 3exp2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑉 → ( ( 𝑥 ⨣ 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) ) |
| 47 | 46 | imp43 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 ⨣ 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
| 48 | 47 | ralrimivva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑉 ( ( 𝑥 ⨣ 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
| 49 | 45 48 | sylan2 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑉 ( ( 𝑥 ⨣ 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
| 50 | simprlr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) ) → 𝑟 ∈ 𝐵 ) | |
| 51 | simprrr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) ) → 𝑤 ∈ 𝑉 ) | |
| 52 | oveq2 | ⊢ ( 𝑦 = 𝑟 → ( 𝑥 ⨣ 𝑦 ) = ( 𝑥 ⨣ 𝑟 ) ) | |
| 53 | 52 | oveq1d | ⊢ ( 𝑦 = 𝑟 → ( ( 𝑥 ⨣ 𝑦 ) · 𝑧 ) = ( ( 𝑥 ⨣ 𝑟 ) · 𝑧 ) ) |
| 54 | oveq1 | ⊢ ( 𝑦 = 𝑟 → ( 𝑦 · 𝑧 ) = ( 𝑟 · 𝑧 ) ) | |
| 55 | 54 | oveq2d | ⊢ ( 𝑦 = 𝑟 → ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) = ( ( 𝑥 · 𝑧 ) + ( 𝑟 · 𝑧 ) ) ) |
| 56 | 53 55 | eqeq12d | ⊢ ( 𝑦 = 𝑟 → ( ( ( 𝑥 ⨣ 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ↔ ( ( 𝑥 ⨣ 𝑟 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑟 · 𝑧 ) ) ) ) |
| 57 | oveq2 | ⊢ ( 𝑧 = 𝑤 → ( ( 𝑥 ⨣ 𝑟 ) · 𝑧 ) = ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) ) | |
| 58 | oveq2 | ⊢ ( 𝑧 = 𝑤 → ( 𝑥 · 𝑧 ) = ( 𝑥 · 𝑤 ) ) | |
| 59 | oveq2 | ⊢ ( 𝑧 = 𝑤 → ( 𝑟 · 𝑧 ) = ( 𝑟 · 𝑤 ) ) | |
| 60 | 58 59 | oveq12d | ⊢ ( 𝑧 = 𝑤 → ( ( 𝑥 · 𝑧 ) + ( 𝑟 · 𝑧 ) ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) |
| 61 | 57 60 | eqeq12d | ⊢ ( 𝑧 = 𝑤 → ( ( ( 𝑥 ⨣ 𝑟 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑟 · 𝑧 ) ) ↔ ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ) |
| 62 | 56 61 | rspc2v | ⊢ ( ( 𝑟 ∈ 𝐵 ∧ 𝑤 ∈ 𝑉 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑉 ( ( 𝑥 ⨣ 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) → ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ) |
| 63 | 50 51 62 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑉 ( ( 𝑥 ⨣ 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) → ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ) |
| 64 | 49 63 | mpd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) ) → ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) |
| 65 | 25 44 64 | 3jca | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) ) → ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ∧ ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ) |
| 66 | 14 | 3exp2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑉 → ( ( 𝑥 × 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) ) ) ) |
| 67 | 66 | imp43 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 × 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
| 68 | 67 | ralrimivva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑉 ( ( 𝑥 × 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
| 69 | 45 68 | sylan2 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑉 ( ( 𝑥 × 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
| 70 | oveq2 | ⊢ ( 𝑦 = 𝑟 → ( 𝑥 × 𝑦 ) = ( 𝑥 × 𝑟 ) ) | |
| 71 | 70 | oveq1d | ⊢ ( 𝑦 = 𝑟 → ( ( 𝑥 × 𝑦 ) · 𝑧 ) = ( ( 𝑥 × 𝑟 ) · 𝑧 ) ) |
| 72 | 54 | oveq2d | ⊢ ( 𝑦 = 𝑟 → ( 𝑥 · ( 𝑦 · 𝑧 ) ) = ( 𝑥 · ( 𝑟 · 𝑧 ) ) ) |
| 73 | 71 72 | eqeq12d | ⊢ ( 𝑦 = 𝑟 → ( ( ( 𝑥 × 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ↔ ( ( 𝑥 × 𝑟 ) · 𝑧 ) = ( 𝑥 · ( 𝑟 · 𝑧 ) ) ) ) |
| 74 | oveq2 | ⊢ ( 𝑧 = 𝑤 → ( ( 𝑥 × 𝑟 ) · 𝑧 ) = ( ( 𝑥 × 𝑟 ) · 𝑤 ) ) | |
| 75 | 59 | oveq2d | ⊢ ( 𝑧 = 𝑤 → ( 𝑥 · ( 𝑟 · 𝑧 ) ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ) |
| 76 | 74 75 | eqeq12d | ⊢ ( 𝑧 = 𝑤 → ( ( ( 𝑥 × 𝑟 ) · 𝑧 ) = ( 𝑥 · ( 𝑟 · 𝑧 ) ) ↔ ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ) ) |
| 77 | 73 76 | rspc2v | ⊢ ( ( 𝑟 ∈ 𝐵 ∧ 𝑤 ∈ 𝑉 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑉 ( ( 𝑥 × 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) → ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ) ) |
| 78 | 50 51 77 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑉 ( ( 𝑥 × 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) → ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ) ) |
| 79 | 69 78 | mpd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) ) → ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ) |
| 80 | 15 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑉 ( 1 · 𝑥 ) = 𝑥 ) |
| 81 | oveq2 | ⊢ ( 𝑥 = 𝑤 → ( 1 · 𝑥 ) = ( 1 · 𝑤 ) ) | |
| 82 | id | ⊢ ( 𝑥 = 𝑤 → 𝑥 = 𝑤 ) | |
| 83 | 81 82 | eqeq12d | ⊢ ( 𝑥 = 𝑤 → ( ( 1 · 𝑥 ) = 𝑥 ↔ ( 1 · 𝑤 ) = 𝑤 ) ) |
| 84 | 83 | rspcv | ⊢ ( 𝑤 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝑉 ( 1 · 𝑥 ) = 𝑥 → ( 1 · 𝑤 ) = 𝑤 ) ) |
| 85 | 84 | ad2antll | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) → ( ∀ 𝑥 ∈ 𝑉 ( 1 · 𝑥 ) = 𝑥 → ( 1 · 𝑤 ) = 𝑤 ) ) |
| 86 | 80 85 | mpan9 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) ) → ( 1 · 𝑤 ) = 𝑤 ) |
| 87 | 65 79 86 | jca32 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) ) → ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ∧ ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) |
| 88 | 87 | anassrs | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) → ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ∧ ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) |
| 89 | 88 | ralrimivva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ∀ 𝑢 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ∧ ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) |
| 90 | 89 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑟 ∈ 𝐵 ∀ 𝑢 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ∧ ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) |
| 91 | 3 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 92 | 5 91 | eqtrd | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 93 | 4 | oveqd | ⊢ ( 𝜑 → ( 𝑟 · 𝑤 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) |
| 94 | 93 1 | eleq12d | ⊢ ( 𝜑 → ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ↔ ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ∈ ( Base ‘ 𝑊 ) ) ) |
| 95 | eqidd | ⊢ ( 𝜑 → 𝑟 = 𝑟 ) | |
| 96 | 2 | oveqd | ⊢ ( 𝜑 → ( 𝑤 + 𝑢 ) = ( 𝑤 ( +g ‘ 𝑊 ) 𝑢 ) ) |
| 97 | 4 95 96 | oveq123d | ⊢ ( 𝜑 → ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑢 ) ) ) |
| 98 | 4 | oveqd | ⊢ ( 𝜑 → ( 𝑟 · 𝑢 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ) |
| 99 | 2 93 98 | oveq123d | ⊢ ( 𝜑 → ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ) ) |
| 100 | 97 99 | eqeq12d | ⊢ ( 𝜑 → ( ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ↔ ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑢 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ) ) ) |
| 101 | 3 | fveq2d | ⊢ ( 𝜑 → ( +g ‘ 𝐹 ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 102 | 6 101 | eqtrd | ⊢ ( 𝜑 → ⨣ = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 103 | 102 | oveqd | ⊢ ( 𝜑 → ( 𝑥 ⨣ 𝑟 ) = ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ) |
| 104 | eqidd | ⊢ ( 𝜑 → 𝑤 = 𝑤 ) | |
| 105 | 4 103 104 | oveq123d | ⊢ ( 𝜑 → ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) |
| 106 | 4 | oveqd | ⊢ ( 𝜑 → ( 𝑥 · 𝑤 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) |
| 107 | 2 106 93 | oveq123d | ⊢ ( 𝜑 → ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) |
| 108 | 105 107 | eqeq12d | ⊢ ( 𝜑 → ( ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ↔ ( ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) ) |
| 109 | 94 100 108 | 3anbi123d | ⊢ ( 𝜑 → ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ∧ ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ↔ ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑢 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ) ∧ ( ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) ) ) |
| 110 | 3 | fveq2d | ⊢ ( 𝜑 → ( .r ‘ 𝐹 ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 111 | 7 110 | eqtrd | ⊢ ( 𝜑 → × = ( .r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 112 | 111 | oveqd | ⊢ ( 𝜑 → ( 𝑥 × 𝑟 ) = ( 𝑥 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ) |
| 113 | 4 112 104 | oveq123d | ⊢ ( 𝜑 → ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( ( 𝑥 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) |
| 114 | eqidd | ⊢ ( 𝜑 → 𝑥 = 𝑥 ) | |
| 115 | 4 114 93 | oveq123d | ⊢ ( 𝜑 → ( 𝑥 · ( 𝑟 · 𝑤 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) |
| 116 | 113 115 | eqeq12d | ⊢ ( 𝜑 → ( ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ↔ ( ( 𝑥 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) ) |
| 117 | 3 | fveq2d | ⊢ ( 𝜑 → ( 1r ‘ 𝐹 ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 118 | 8 117 | eqtrd | ⊢ ( 𝜑 → 1 = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 119 | 4 118 104 | oveq123d | ⊢ ( 𝜑 → ( 1 · 𝑤 ) = ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) |
| 120 | 119 | eqeq1d | ⊢ ( 𝜑 → ( ( 1 · 𝑤 ) = 𝑤 ↔ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = 𝑤 ) ) |
| 121 | 116 120 | anbi12d | ⊢ ( 𝜑 → ( ( ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ↔ ( ( ( 𝑥 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = 𝑤 ) ) ) |
| 122 | 109 121 | anbi12d | ⊢ ( 𝜑 → ( ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ∧ ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ↔ ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑢 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ) ∧ ( ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) ∧ ( ( ( 𝑥 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = 𝑤 ) ) ) ) |
| 123 | 1 122 | raleqbidv | ⊢ ( 𝜑 → ( ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ∧ ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑢 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ) ∧ ( ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) ∧ ( ( ( 𝑥 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = 𝑤 ) ) ) ) |
| 124 | 1 123 | raleqbidv | ⊢ ( 𝜑 → ( ∀ 𝑢 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ∧ ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑢 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑢 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ) ∧ ( ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) ∧ ( ( ( 𝑥 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = 𝑤 ) ) ) ) |
| 125 | 92 124 | raleqbidv | ⊢ ( 𝜑 → ( ∀ 𝑟 ∈ 𝐵 ∀ 𝑢 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ∧ ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑢 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑢 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ) ∧ ( ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) ∧ ( ( ( 𝑥 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = 𝑤 ) ) ) ) |
| 126 | 92 125 | raleqbidv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑟 ∈ 𝐵 ∀ 𝑢 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ∧ ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑢 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑢 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ) ∧ ( ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) ∧ ( ( ( 𝑥 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = 𝑤 ) ) ) ) |
| 127 | 90 126 | mpbid | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑢 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑢 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ) ∧ ( ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) ∧ ( ( ( 𝑥 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = 𝑤 ) ) ) |
| 128 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 129 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 130 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 131 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 132 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 133 | eqid | ⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 134 | eqid | ⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) | |
| 135 | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) | |
| 136 | 128 129 130 131 132 133 134 135 | islmod | ⊢ ( 𝑊 ∈ LMod ↔ ( 𝑊 ∈ Grp ∧ ( Scalar ‘ 𝑊 ) ∈ Ring ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑢 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑢 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ) ∧ ( ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) ∧ ( ( ( 𝑥 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = 𝑤 ) ) ) ) |
| 137 | 10 16 127 136 | syl3anbrc | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |