This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: All subspaces are subgroups. (Contributed by Stefan O'Rear, 11-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lsssubg.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| Assertion | lsssubg | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsssubg.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 3 | 2 1 | lssss | ⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 4 | 3 | adantl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 5 | 1 | lssn0 | ⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ≠ ∅ ) |
| 6 | 5 | adantl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ≠ ∅ ) |
| 7 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 8 | 7 1 | lssvacl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ∈ 𝑈 ) |
| 9 | 8 | anassrs | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝑈 ) → ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ∈ 𝑈 ) |
| 10 | 9 | ralrimiva | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) → ∀ 𝑦 ∈ 𝑈 ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ∈ 𝑈 ) |
| 11 | eqid | ⊢ ( invg ‘ 𝑊 ) = ( invg ‘ 𝑊 ) | |
| 12 | 1 11 | lssvnegcl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈 ) → ( ( invg ‘ 𝑊 ) ‘ 𝑥 ) ∈ 𝑈 ) |
| 13 | 12 | 3expa | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) → ( ( invg ‘ 𝑊 ) ‘ 𝑥 ) ∈ 𝑈 ) |
| 14 | 10 13 | jca | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) → ( ∀ 𝑦 ∈ 𝑈 ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ∈ 𝑈 ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑥 ) ∈ 𝑈 ) ) |
| 15 | 14 | ralrimiva | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ∀ 𝑥 ∈ 𝑈 ( ∀ 𝑦 ∈ 𝑈 ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ∈ 𝑈 ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑥 ) ∈ 𝑈 ) ) |
| 16 | lmodgrp | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) | |
| 17 | 16 | adantr | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑊 ∈ Grp ) |
| 18 | 2 7 11 | issubg2 | ⊢ ( 𝑊 ∈ Grp → ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ↔ ( 𝑈 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑈 ( ∀ 𝑦 ∈ 𝑈 ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ∈ 𝑈 ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑥 ) ∈ 𝑈 ) ) ) ) |
| 19 | 17 18 | syl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ↔ ( 𝑈 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑈 ( ∀ 𝑦 ∈ 𝑈 ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ∈ 𝑈 ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑥 ) ∈ 𝑈 ) ) ) ) |
| 20 | 4 6 15 19 | mpbir3and | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |