This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A linear subspace of a module is a subset which is a module in its own right. (Contributed by Stefan O'Rear, 6-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islss3.x | |- X = ( W |`s U ) |
|
| islss3.v | |- V = ( Base ` W ) |
||
| islss3.s | |- S = ( LSubSp ` W ) |
||
| Assertion | islss3 | |- ( W e. LMod -> ( U e. S <-> ( U C_ V /\ X e. LMod ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islss3.x | |- X = ( W |`s U ) |
|
| 2 | islss3.v | |- V = ( Base ` W ) |
|
| 3 | islss3.s | |- S = ( LSubSp ` W ) |
|
| 4 | 2 3 | lssss | |- ( U e. S -> U C_ V ) |
| 5 | 4 | adantl | |- ( ( W e. LMod /\ U e. S ) -> U C_ V ) |
| 6 | 1 2 | ressbas2 | |- ( U C_ V -> U = ( Base ` X ) ) |
| 7 | 6 | adantl | |- ( ( W e. LMod /\ U C_ V ) -> U = ( Base ` X ) ) |
| 8 | 4 7 | sylan2 | |- ( ( W e. LMod /\ U e. S ) -> U = ( Base ` X ) ) |
| 9 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 10 | 1 9 | ressplusg | |- ( U e. S -> ( +g ` W ) = ( +g ` X ) ) |
| 11 | 10 | adantl | |- ( ( W e. LMod /\ U e. S ) -> ( +g ` W ) = ( +g ` X ) ) |
| 12 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 13 | 1 12 | resssca | |- ( U e. S -> ( Scalar ` W ) = ( Scalar ` X ) ) |
| 14 | 13 | adantl | |- ( ( W e. LMod /\ U e. S ) -> ( Scalar ` W ) = ( Scalar ` X ) ) |
| 15 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 16 | 1 15 | ressvsca | |- ( U e. S -> ( .s ` W ) = ( .s ` X ) ) |
| 17 | 16 | adantl | |- ( ( W e. LMod /\ U e. S ) -> ( .s ` W ) = ( .s ` X ) ) |
| 18 | eqidd | |- ( ( W e. LMod /\ U e. S ) -> ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) ) |
|
| 19 | eqidd | |- ( ( W e. LMod /\ U e. S ) -> ( +g ` ( Scalar ` W ) ) = ( +g ` ( Scalar ` W ) ) ) |
|
| 20 | eqidd | |- ( ( W e. LMod /\ U e. S ) -> ( .r ` ( Scalar ` W ) ) = ( .r ` ( Scalar ` W ) ) ) |
|
| 21 | eqidd | |- ( ( W e. LMod /\ U e. S ) -> ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) ) |
|
| 22 | 12 | lmodring | |- ( W e. LMod -> ( Scalar ` W ) e. Ring ) |
| 23 | 22 | adantr | |- ( ( W e. LMod /\ U e. S ) -> ( Scalar ` W ) e. Ring ) |
| 24 | 3 | lsssubg | |- ( ( W e. LMod /\ U e. S ) -> U e. ( SubGrp ` W ) ) |
| 25 | 1 | subggrp | |- ( U e. ( SubGrp ` W ) -> X e. Grp ) |
| 26 | 24 25 | syl | |- ( ( W e. LMod /\ U e. S ) -> X e. Grp ) |
| 27 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 28 | 12 15 27 3 | lssvscl | |- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. U ) ) -> ( x ( .s ` W ) a ) e. U ) |
| 29 | 28 | 3impb | |- ( ( ( W e. LMod /\ U e. S ) /\ x e. ( Base ` ( Scalar ` W ) ) /\ a e. U ) -> ( x ( .s ` W ) a ) e. U ) |
| 30 | simpll | |- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. U /\ b e. U ) ) -> W e. LMod ) |
|
| 31 | simpr1 | |- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. U /\ b e. U ) ) -> x e. ( Base ` ( Scalar ` W ) ) ) |
|
| 32 | 4 | ad2antlr | |- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. U /\ b e. U ) ) -> U C_ V ) |
| 33 | simpr2 | |- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. U /\ b e. U ) ) -> a e. U ) |
|
| 34 | 32 33 | sseldd | |- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. U /\ b e. U ) ) -> a e. V ) |
| 35 | simpr3 | |- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. U /\ b e. U ) ) -> b e. U ) |
|
| 36 | 32 35 | sseldd | |- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. U /\ b e. U ) ) -> b e. V ) |
| 37 | 2 9 12 15 27 | lmodvsdi | |- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. V /\ b e. V ) ) -> ( x ( .s ` W ) ( a ( +g ` W ) b ) ) = ( ( x ( .s ` W ) a ) ( +g ` W ) ( x ( .s ` W ) b ) ) ) |
| 38 | 30 31 34 36 37 | syl13anc | |- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. U /\ b e. U ) ) -> ( x ( .s ` W ) ( a ( +g ` W ) b ) ) = ( ( x ( .s ` W ) a ) ( +g ` W ) ( x ( .s ` W ) b ) ) ) |
| 39 | simpll | |- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. ( Base ` ( Scalar ` W ) ) /\ b e. U ) ) -> W e. LMod ) |
|
| 40 | simpr1 | |- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. ( Base ` ( Scalar ` W ) ) /\ b e. U ) ) -> x e. ( Base ` ( Scalar ` W ) ) ) |
|
| 41 | simpr2 | |- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. ( Base ` ( Scalar ` W ) ) /\ b e. U ) ) -> a e. ( Base ` ( Scalar ` W ) ) ) |
|
| 42 | 4 | ad2antlr | |- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. ( Base ` ( Scalar ` W ) ) /\ b e. U ) ) -> U C_ V ) |
| 43 | simpr3 | |- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. ( Base ` ( Scalar ` W ) ) /\ b e. U ) ) -> b e. U ) |
|
| 44 | 42 43 | sseldd | |- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. ( Base ` ( Scalar ` W ) ) /\ b e. U ) ) -> b e. V ) |
| 45 | eqid | |- ( +g ` ( Scalar ` W ) ) = ( +g ` ( Scalar ` W ) ) |
|
| 46 | 2 9 12 15 27 45 | lmodvsdir | |- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. ( Base ` ( Scalar ` W ) ) /\ b e. V ) ) -> ( ( x ( +g ` ( Scalar ` W ) ) a ) ( .s ` W ) b ) = ( ( x ( .s ` W ) b ) ( +g ` W ) ( a ( .s ` W ) b ) ) ) |
| 47 | 39 40 41 44 46 | syl13anc | |- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. ( Base ` ( Scalar ` W ) ) /\ b e. U ) ) -> ( ( x ( +g ` ( Scalar ` W ) ) a ) ( .s ` W ) b ) = ( ( x ( .s ` W ) b ) ( +g ` W ) ( a ( .s ` W ) b ) ) ) |
| 48 | eqid | |- ( .r ` ( Scalar ` W ) ) = ( .r ` ( Scalar ` W ) ) |
|
| 49 | 2 12 15 27 48 | lmodvsass | |- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. ( Base ` ( Scalar ` W ) ) /\ b e. V ) ) -> ( ( x ( .r ` ( Scalar ` W ) ) a ) ( .s ` W ) b ) = ( x ( .s ` W ) ( a ( .s ` W ) b ) ) ) |
| 50 | 39 40 41 44 49 | syl13anc | |- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. ( Base ` ( Scalar ` W ) ) /\ b e. U ) ) -> ( ( x ( .r ` ( Scalar ` W ) ) a ) ( .s ` W ) b ) = ( x ( .s ` W ) ( a ( .s ` W ) b ) ) ) |
| 51 | 5 | sselda | |- ( ( ( W e. LMod /\ U e. S ) /\ x e. U ) -> x e. V ) |
| 52 | eqid | |- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
|
| 53 | 2 12 15 52 | lmodvs1 | |- ( ( W e. LMod /\ x e. V ) -> ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) x ) = x ) |
| 54 | 53 | adantlr | |- ( ( ( W e. LMod /\ U e. S ) /\ x e. V ) -> ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) x ) = x ) |
| 55 | 51 54 | syldan | |- ( ( ( W e. LMod /\ U e. S ) /\ x e. U ) -> ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) x ) = x ) |
| 56 | 8 11 14 17 18 19 20 21 23 26 29 38 47 50 55 | islmodd | |- ( ( W e. LMod /\ U e. S ) -> X e. LMod ) |
| 57 | 5 56 | jca | |- ( ( W e. LMod /\ U e. S ) -> ( U C_ V /\ X e. LMod ) ) |
| 58 | simprl | |- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> U C_ V ) |
|
| 59 | 58 6 | syl | |- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> U = ( Base ` X ) ) |
| 60 | fvex | |- ( Base ` X ) e. _V |
|
| 61 | 59 60 | eqeltrdi | |- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> U e. _V ) |
| 62 | 1 12 | resssca | |- ( U e. _V -> ( Scalar ` W ) = ( Scalar ` X ) ) |
| 63 | 61 62 | syl | |- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( Scalar ` W ) = ( Scalar ` X ) ) |
| 64 | 63 | eqcomd | |- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( Scalar ` X ) = ( Scalar ` W ) ) |
| 65 | eqidd | |- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( Base ` ( Scalar ` X ) ) = ( Base ` ( Scalar ` X ) ) ) |
|
| 66 | 2 | a1i | |- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> V = ( Base ` W ) ) |
| 67 | 1 9 | ressplusg | |- ( U e. _V -> ( +g ` W ) = ( +g ` X ) ) |
| 68 | 61 67 | syl | |- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( +g ` W ) = ( +g ` X ) ) |
| 69 | 68 | eqcomd | |- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( +g ` X ) = ( +g ` W ) ) |
| 70 | 1 15 | ressvsca | |- ( U e. _V -> ( .s ` W ) = ( .s ` X ) ) |
| 71 | 61 70 | syl | |- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( .s ` W ) = ( .s ` X ) ) |
| 72 | 71 | eqcomd | |- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( .s ` X ) = ( .s ` W ) ) |
| 73 | 3 | a1i | |- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> S = ( LSubSp ` W ) ) |
| 74 | 59 58 | eqsstrrd | |- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( Base ` X ) C_ V ) |
| 75 | lmodgrp | |- ( X e. LMod -> X e. Grp ) |
|
| 76 | 75 | ad2antll | |- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> X e. Grp ) |
| 77 | eqid | |- ( Base ` X ) = ( Base ` X ) |
|
| 78 | 77 | grpbn0 | |- ( X e. Grp -> ( Base ` X ) =/= (/) ) |
| 79 | 76 78 | syl | |- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( Base ` X ) =/= (/) ) |
| 80 | eqid | |- ( LSubSp ` X ) = ( LSubSp ` X ) |
|
| 81 | 77 80 | lss1 | |- ( X e. LMod -> ( Base ` X ) e. ( LSubSp ` X ) ) |
| 82 | 81 | ad2antll | |- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( Base ` X ) e. ( LSubSp ` X ) ) |
| 83 | eqid | |- ( Scalar ` X ) = ( Scalar ` X ) |
|
| 84 | eqid | |- ( Base ` ( Scalar ` X ) ) = ( Base ` ( Scalar ` X ) ) |
|
| 85 | eqid | |- ( +g ` X ) = ( +g ` X ) |
|
| 86 | eqid | |- ( .s ` X ) = ( .s ` X ) |
|
| 87 | 83 84 85 86 80 | lsscl | |- ( ( ( Base ` X ) e. ( LSubSp ` X ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ a e. ( Base ` X ) /\ b e. ( Base ` X ) ) ) -> ( ( x ( .s ` X ) a ) ( +g ` X ) b ) e. ( Base ` X ) ) |
| 88 | 82 87 | sylan | |- ( ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ a e. ( Base ` X ) /\ b e. ( Base ` X ) ) ) -> ( ( x ( .s ` X ) a ) ( +g ` X ) b ) e. ( Base ` X ) ) |
| 89 | 64 65 66 69 72 73 74 79 88 | islssd | |- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( Base ` X ) e. S ) |
| 90 | 59 89 | eqeltrd | |- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> U e. S ) |
| 91 | 57 90 | impbida | |- ( W e. LMod -> ( U e. S <-> ( U C_ V /\ X e. LMod ) ) ) |