This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 0 is an additive identity. This used to be one of our complex number axioms, until it was found to be dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addrid | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + 0 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re | ⊢ 1 ∈ ℝ | |
| 2 | ax-rnegex | ⊢ ( 1 ∈ ℝ → ∃ 𝑐 ∈ ℝ ( 1 + 𝑐 ) = 0 ) | |
| 3 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 4 | oveq2 | ⊢ ( 𝑐 = 0 → ( 1 + 𝑐 ) = ( 1 + 0 ) ) | |
| 5 | 4 | eqeq1d | ⊢ ( 𝑐 = 0 → ( ( 1 + 𝑐 ) = 0 ↔ ( 1 + 0 ) = 0 ) ) |
| 6 | 5 | biimpcd | ⊢ ( ( 1 + 𝑐 ) = 0 → ( 𝑐 = 0 → ( 1 + 0 ) = 0 ) ) |
| 7 | oveq2 | ⊢ ( ( 1 + 0 ) = 0 → ( ( ( i · i ) · ( i · i ) ) · ( 1 + 0 ) ) = ( ( ( i · i ) · ( i · i ) ) · 0 ) ) | |
| 8 | ax-icn | ⊢ i ∈ ℂ | |
| 9 | 8 8 | mulcli | ⊢ ( i · i ) ∈ ℂ |
| 10 | 9 9 | mulcli | ⊢ ( ( i · i ) · ( i · i ) ) ∈ ℂ |
| 11 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 12 | 0cn | ⊢ 0 ∈ ℂ | |
| 13 | 10 11 12 | adddii | ⊢ ( ( ( i · i ) · ( i · i ) ) · ( 1 + 0 ) ) = ( ( ( ( i · i ) · ( i · i ) ) · 1 ) + ( ( ( i · i ) · ( i · i ) ) · 0 ) ) |
| 14 | 10 | mulridi | ⊢ ( ( ( i · i ) · ( i · i ) ) · 1 ) = ( ( i · i ) · ( i · i ) ) |
| 15 | mul01 | ⊢ ( ( ( i · i ) · ( i · i ) ) ∈ ℂ → ( ( ( i · i ) · ( i · i ) ) · 0 ) = 0 ) | |
| 16 | 10 15 | ax-mp | ⊢ ( ( ( i · i ) · ( i · i ) ) · 0 ) = 0 |
| 17 | ax-i2m1 | ⊢ ( ( i · i ) + 1 ) = 0 | |
| 18 | 16 17 | eqtr4i | ⊢ ( ( ( i · i ) · ( i · i ) ) · 0 ) = ( ( i · i ) + 1 ) |
| 19 | 14 18 | oveq12i | ⊢ ( ( ( ( i · i ) · ( i · i ) ) · 1 ) + ( ( ( i · i ) · ( i · i ) ) · 0 ) ) = ( ( ( i · i ) · ( i · i ) ) + ( ( i · i ) + 1 ) ) |
| 20 | 13 19 | eqtri | ⊢ ( ( ( i · i ) · ( i · i ) ) · ( 1 + 0 ) ) = ( ( ( i · i ) · ( i · i ) ) + ( ( i · i ) + 1 ) ) |
| 21 | 20 16 | eqeq12i | ⊢ ( ( ( ( i · i ) · ( i · i ) ) · ( 1 + 0 ) ) = ( ( ( i · i ) · ( i · i ) ) · 0 ) ↔ ( ( ( i · i ) · ( i · i ) ) + ( ( i · i ) + 1 ) ) = 0 ) |
| 22 | 10 9 11 | addassi | ⊢ ( ( ( ( i · i ) · ( i · i ) ) + ( i · i ) ) + 1 ) = ( ( ( i · i ) · ( i · i ) ) + ( ( i · i ) + 1 ) ) |
| 23 | 9 | mulridi | ⊢ ( ( i · i ) · 1 ) = ( i · i ) |
| 24 | 23 | oveq2i | ⊢ ( ( ( i · i ) · ( i · i ) ) + ( ( i · i ) · 1 ) ) = ( ( ( i · i ) · ( i · i ) ) + ( i · i ) ) |
| 25 | 9 9 11 | adddii | ⊢ ( ( i · i ) · ( ( i · i ) + 1 ) ) = ( ( ( i · i ) · ( i · i ) ) + ( ( i · i ) · 1 ) ) |
| 26 | 17 | oveq2i | ⊢ ( ( i · i ) · ( ( i · i ) + 1 ) ) = ( ( i · i ) · 0 ) |
| 27 | mul01 | ⊢ ( ( i · i ) ∈ ℂ → ( ( i · i ) · 0 ) = 0 ) | |
| 28 | 9 27 | ax-mp | ⊢ ( ( i · i ) · 0 ) = 0 |
| 29 | 26 28 | eqtri | ⊢ ( ( i · i ) · ( ( i · i ) + 1 ) ) = 0 |
| 30 | 25 29 | eqtr3i | ⊢ ( ( ( i · i ) · ( i · i ) ) + ( ( i · i ) · 1 ) ) = 0 |
| 31 | 24 30 | eqtr3i | ⊢ ( ( ( i · i ) · ( i · i ) ) + ( i · i ) ) = 0 |
| 32 | 31 | oveq1i | ⊢ ( ( ( ( i · i ) · ( i · i ) ) + ( i · i ) ) + 1 ) = ( 0 + 1 ) |
| 33 | 22 32 | eqtr3i | ⊢ ( ( ( i · i ) · ( i · i ) ) + ( ( i · i ) + 1 ) ) = ( 0 + 1 ) |
| 34 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 35 | 34 | eqcomi | ⊢ 0 = ( 0 + 0 ) |
| 36 | 33 35 | eqeq12i | ⊢ ( ( ( ( i · i ) · ( i · i ) ) + ( ( i · i ) + 1 ) ) = 0 ↔ ( 0 + 1 ) = ( 0 + 0 ) ) |
| 37 | 0re | ⊢ 0 ∈ ℝ | |
| 38 | readdcan | ⊢ ( ( 1 ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( 0 + 1 ) = ( 0 + 0 ) ↔ 1 = 0 ) ) | |
| 39 | 1 37 37 38 | mp3an | ⊢ ( ( 0 + 1 ) = ( 0 + 0 ) ↔ 1 = 0 ) |
| 40 | 21 36 39 | 3bitri | ⊢ ( ( ( ( i · i ) · ( i · i ) ) · ( 1 + 0 ) ) = ( ( ( i · i ) · ( i · i ) ) · 0 ) ↔ 1 = 0 ) |
| 41 | 7 40 | sylib | ⊢ ( ( 1 + 0 ) = 0 → 1 = 0 ) |
| 42 | 6 41 | syl6 | ⊢ ( ( 1 + 𝑐 ) = 0 → ( 𝑐 = 0 → 1 = 0 ) ) |
| 43 | 42 | necon3d | ⊢ ( ( 1 + 𝑐 ) = 0 → ( 1 ≠ 0 → 𝑐 ≠ 0 ) ) |
| 44 | 3 43 | mpi | ⊢ ( ( 1 + 𝑐 ) = 0 → 𝑐 ≠ 0 ) |
| 45 | ax-rrecex | ⊢ ( ( 𝑐 ∈ ℝ ∧ 𝑐 ≠ 0 ) → ∃ 𝑥 ∈ ℝ ( 𝑐 · 𝑥 ) = 1 ) | |
| 46 | 44 45 | sylan2 | ⊢ ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) → ∃ 𝑥 ∈ ℝ ( 𝑐 · 𝑥 ) = 1 ) |
| 47 | simpr | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 48 | simplrl | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → 𝑥 ∈ ℝ ) | |
| 49 | 48 | recnd | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → 𝑥 ∈ ℂ ) |
| 50 | 47 49 | mulcld | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( 𝐴 · 𝑥 ) ∈ ℂ ) |
| 51 | simplll | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → 𝑐 ∈ ℝ ) | |
| 52 | 51 | recnd | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → 𝑐 ∈ ℂ ) |
| 53 | 12 | a1i | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → 0 ∈ ℂ ) |
| 54 | 50 52 53 | adddid | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴 · 𝑥 ) · ( 𝑐 + 0 ) ) = ( ( ( 𝐴 · 𝑥 ) · 𝑐 ) + ( ( 𝐴 · 𝑥 ) · 0 ) ) ) |
| 55 | 11 | a1i | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → 1 ∈ ℂ ) |
| 56 | 55 52 53 | addassd | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( ( 1 + 𝑐 ) + 0 ) = ( 1 + ( 𝑐 + 0 ) ) ) |
| 57 | simpllr | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( 1 + 𝑐 ) = 0 ) | |
| 58 | 57 | oveq1d | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( ( 1 + 𝑐 ) + 0 ) = ( 0 + 0 ) ) |
| 59 | 56 58 | eqtr3d | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( 1 + ( 𝑐 + 0 ) ) = ( 0 + 0 ) ) |
| 60 | 34 59 57 | 3eqtr4a | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( 1 + ( 𝑐 + 0 ) ) = ( 1 + 𝑐 ) ) |
| 61 | 37 | a1i | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → 0 ∈ ℝ ) |
| 62 | 51 61 | readdcld | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( 𝑐 + 0 ) ∈ ℝ ) |
| 63 | 1 | a1i | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → 1 ∈ ℝ ) |
| 64 | readdcan | ⊢ ( ( ( 𝑐 + 0 ) ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 1 + ( 𝑐 + 0 ) ) = ( 1 + 𝑐 ) ↔ ( 𝑐 + 0 ) = 𝑐 ) ) | |
| 65 | 62 51 63 64 | syl3anc | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( ( 1 + ( 𝑐 + 0 ) ) = ( 1 + 𝑐 ) ↔ ( 𝑐 + 0 ) = 𝑐 ) ) |
| 66 | 60 65 | mpbid | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( 𝑐 + 0 ) = 𝑐 ) |
| 67 | 66 | oveq2d | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴 · 𝑥 ) · ( 𝑐 + 0 ) ) = ( ( 𝐴 · 𝑥 ) · 𝑐 ) ) |
| 68 | 54 67 | eqtr3d | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( ( ( 𝐴 · 𝑥 ) · 𝑐 ) + ( ( 𝐴 · 𝑥 ) · 0 ) ) = ( ( 𝐴 · 𝑥 ) · 𝑐 ) ) |
| 69 | mul31 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ( 𝐴 · 𝑥 ) · 𝑐 ) = ( ( 𝑐 · 𝑥 ) · 𝐴 ) ) | |
| 70 | 47 49 52 69 | syl3anc | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴 · 𝑥 ) · 𝑐 ) = ( ( 𝑐 · 𝑥 ) · 𝐴 ) ) |
| 71 | simplrr | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( 𝑐 · 𝑥 ) = 1 ) | |
| 72 | 71 | oveq1d | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( ( 𝑐 · 𝑥 ) · 𝐴 ) = ( 1 · 𝐴 ) ) |
| 73 | 47 | mullidd | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( 1 · 𝐴 ) = 𝐴 ) |
| 74 | 70 72 73 | 3eqtrd | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴 · 𝑥 ) · 𝑐 ) = 𝐴 ) |
| 75 | mul01 | ⊢ ( ( 𝐴 · 𝑥 ) ∈ ℂ → ( ( 𝐴 · 𝑥 ) · 0 ) = 0 ) | |
| 76 | 50 75 | syl | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴 · 𝑥 ) · 0 ) = 0 ) |
| 77 | 74 76 | oveq12d | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( ( ( 𝐴 · 𝑥 ) · 𝑐 ) + ( ( 𝐴 · 𝑥 ) · 0 ) ) = ( 𝐴 + 0 ) ) |
| 78 | 68 77 74 | 3eqtr3d | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑐 · 𝑥 ) = 1 ) ) ∧ 𝐴 ∈ ℂ ) → ( 𝐴 + 0 ) = 𝐴 ) |
| 79 | 78 | exp42 | ⊢ ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) → ( 𝑥 ∈ ℝ → ( ( 𝑐 · 𝑥 ) = 1 → ( 𝐴 ∈ ℂ → ( 𝐴 + 0 ) = 𝐴 ) ) ) ) |
| 80 | 79 | rexlimdv | ⊢ ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) → ( ∃ 𝑥 ∈ ℝ ( 𝑐 · 𝑥 ) = 1 → ( 𝐴 ∈ ℂ → ( 𝐴 + 0 ) = 𝐴 ) ) ) |
| 81 | 46 80 | mpd | ⊢ ( ( 𝑐 ∈ ℝ ∧ ( 1 + 𝑐 ) = 0 ) → ( 𝐴 ∈ ℂ → ( 𝐴 + 0 ) = 𝐴 ) ) |
| 82 | 81 | rexlimiva | ⊢ ( ∃ 𝑐 ∈ ℝ ( 1 + 𝑐 ) = 0 → ( 𝐴 ∈ ℂ → ( 𝐴 + 0 ) = 𝐴 ) ) |
| 83 | 1 2 82 | mp2b | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + 0 ) = 𝐴 ) |