This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any infinite well-orderable set is equinumerous to its set of finite subsets. (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infpwfien | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝒫 𝐴 ∩ Fin ) ≈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infxpidm2 | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴 × 𝐴 ) ≈ 𝐴 ) | |
| 2 | infn0 | ⊢ ( ω ≼ 𝐴 → 𝐴 ≠ ∅ ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → 𝐴 ≠ ∅ ) |
| 4 | fseqen | ⊢ ( ( ( 𝐴 × 𝐴 ) ≈ 𝐴 ∧ 𝐴 ≠ ∅ ) → ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ≈ ( ω × 𝐴 ) ) | |
| 5 | 1 3 4 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ≈ ( ω × 𝐴 ) ) |
| 6 | xpdom1g | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( ω × 𝐴 ) ≼ ( 𝐴 × 𝐴 ) ) | |
| 7 | domentr | ⊢ ( ( ( ω × 𝐴 ) ≼ ( 𝐴 × 𝐴 ) ∧ ( 𝐴 × 𝐴 ) ≈ 𝐴 ) → ( ω × 𝐴 ) ≼ 𝐴 ) | |
| 8 | 6 1 7 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( ω × 𝐴 ) ≼ 𝐴 ) |
| 9 | endomtr | ⊢ ( ( ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ≈ ( ω × 𝐴 ) ∧ ( ω × 𝐴 ) ≼ 𝐴 ) → ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ≼ 𝐴 ) | |
| 10 | 5 8 9 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ≼ 𝐴 ) |
| 11 | numdom | ⊢ ( ( 𝐴 ∈ dom card ∧ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ≼ 𝐴 ) → ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∈ dom card ) | |
| 12 | 10 11 | syldan | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∈ dom card ) |
| 13 | eliun | ⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ↔ ∃ 𝑛 ∈ ω 𝑥 ∈ ( 𝐴 ↑m 𝑛 ) ) | |
| 14 | elmapi | ⊢ ( 𝑥 ∈ ( 𝐴 ↑m 𝑛 ) → 𝑥 : 𝑛 ⟶ 𝐴 ) | |
| 15 | 14 | ad2antll | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝑛 ∈ ω ∧ 𝑥 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → 𝑥 : 𝑛 ⟶ 𝐴 ) |
| 16 | 15 | frnd | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝑛 ∈ ω ∧ 𝑥 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ran 𝑥 ⊆ 𝐴 ) |
| 17 | vex | ⊢ 𝑥 ∈ V | |
| 18 | 17 | rnex | ⊢ ran 𝑥 ∈ V |
| 19 | 18 | elpw | ⊢ ( ran 𝑥 ∈ 𝒫 𝐴 ↔ ran 𝑥 ⊆ 𝐴 ) |
| 20 | 16 19 | sylibr | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝑛 ∈ ω ∧ 𝑥 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ran 𝑥 ∈ 𝒫 𝐴 ) |
| 21 | simprl | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝑛 ∈ ω ∧ 𝑥 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → 𝑛 ∈ ω ) | |
| 22 | ssid | ⊢ 𝑛 ⊆ 𝑛 | |
| 23 | ssnnfi | ⊢ ( ( 𝑛 ∈ ω ∧ 𝑛 ⊆ 𝑛 ) → 𝑛 ∈ Fin ) | |
| 24 | 21 22 23 | sylancl | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝑛 ∈ ω ∧ 𝑥 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → 𝑛 ∈ Fin ) |
| 25 | ffn | ⊢ ( 𝑥 : 𝑛 ⟶ 𝐴 → 𝑥 Fn 𝑛 ) | |
| 26 | dffn4 | ⊢ ( 𝑥 Fn 𝑛 ↔ 𝑥 : 𝑛 –onto→ ran 𝑥 ) | |
| 27 | 25 26 | sylib | ⊢ ( 𝑥 : 𝑛 ⟶ 𝐴 → 𝑥 : 𝑛 –onto→ ran 𝑥 ) |
| 28 | 15 27 | syl | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝑛 ∈ ω ∧ 𝑥 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → 𝑥 : 𝑛 –onto→ ran 𝑥 ) |
| 29 | fofi | ⊢ ( ( 𝑛 ∈ Fin ∧ 𝑥 : 𝑛 –onto→ ran 𝑥 ) → ran 𝑥 ∈ Fin ) | |
| 30 | 24 28 29 | syl2anc | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝑛 ∈ ω ∧ 𝑥 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ran 𝑥 ∈ Fin ) |
| 31 | 20 30 | elind | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝑛 ∈ ω ∧ 𝑥 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ran 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 32 | 31 | expr | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ 𝑛 ∈ ω ) → ( 𝑥 ∈ ( 𝐴 ↑m 𝑛 ) → ran 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ) |
| 33 | 32 | rexlimdva | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( ∃ 𝑛 ∈ ω 𝑥 ∈ ( 𝐴 ↑m 𝑛 ) → ran 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ) |
| 34 | 13 33 | biimtrid | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) → ran 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ) |
| 35 | 34 | imp | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) → ran 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 36 | 35 | fmpttd | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ↦ ran 𝑥 ) : ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ⟶ ( 𝒫 𝐴 ∩ Fin ) ) |
| 37 | 36 | ffnd | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ↦ ran 𝑥 ) Fn ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
| 38 | 36 | frnd | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ran ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ↦ ran 𝑥 ) ⊆ ( 𝒫 𝐴 ∩ Fin ) ) |
| 39 | simpr | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) | |
| 40 | 39 | elin2d | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑦 ∈ Fin ) |
| 41 | isfi | ⊢ ( 𝑦 ∈ Fin ↔ ∃ 𝑚 ∈ ω 𝑦 ≈ 𝑚 ) | |
| 42 | 40 41 | sylib | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ∃ 𝑚 ∈ ω 𝑦 ≈ 𝑚 ) |
| 43 | ensym | ⊢ ( 𝑦 ≈ 𝑚 → 𝑚 ≈ 𝑦 ) | |
| 44 | bren | ⊢ ( 𝑚 ≈ 𝑦 ↔ ∃ 𝑥 𝑥 : 𝑚 –1-1-onto→ 𝑦 ) | |
| 45 | 43 44 | sylib | ⊢ ( 𝑦 ≈ 𝑚 → ∃ 𝑥 𝑥 : 𝑚 –1-1-onto→ 𝑦 ) |
| 46 | simprl | ⊢ ( ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑚 ∈ ω ∧ 𝑥 : 𝑚 –1-1-onto→ 𝑦 ) ) → 𝑚 ∈ ω ) | |
| 47 | f1of | ⊢ ( 𝑥 : 𝑚 –1-1-onto→ 𝑦 → 𝑥 : 𝑚 ⟶ 𝑦 ) | |
| 48 | 47 | ad2antll | ⊢ ( ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑚 ∈ ω ∧ 𝑥 : 𝑚 –1-1-onto→ 𝑦 ) ) → 𝑥 : 𝑚 ⟶ 𝑦 ) |
| 49 | simplr | ⊢ ( ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑚 ∈ ω ∧ 𝑥 : 𝑚 –1-1-onto→ 𝑦 ) ) → 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) | |
| 50 | 49 | elin1d | ⊢ ( ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑚 ∈ ω ∧ 𝑥 : 𝑚 –1-1-onto→ 𝑦 ) ) → 𝑦 ∈ 𝒫 𝐴 ) |
| 51 | 50 | elpwid | ⊢ ( ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑚 ∈ ω ∧ 𝑥 : 𝑚 –1-1-onto→ 𝑦 ) ) → 𝑦 ⊆ 𝐴 ) |
| 52 | 48 51 | fssd | ⊢ ( ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑚 ∈ ω ∧ 𝑥 : 𝑚 –1-1-onto→ 𝑦 ) ) → 𝑥 : 𝑚 ⟶ 𝐴 ) |
| 53 | simplll | ⊢ ( ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑚 ∈ ω ∧ 𝑥 : 𝑚 –1-1-onto→ 𝑦 ) ) → 𝐴 ∈ dom card ) | |
| 54 | vex | ⊢ 𝑚 ∈ V | |
| 55 | elmapg | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝑚 ∈ V ) → ( 𝑥 ∈ ( 𝐴 ↑m 𝑚 ) ↔ 𝑥 : 𝑚 ⟶ 𝐴 ) ) | |
| 56 | 53 54 55 | sylancl | ⊢ ( ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑚 ∈ ω ∧ 𝑥 : 𝑚 –1-1-onto→ 𝑦 ) ) → ( 𝑥 ∈ ( 𝐴 ↑m 𝑚 ) ↔ 𝑥 : 𝑚 ⟶ 𝐴 ) ) |
| 57 | 52 56 | mpbird | ⊢ ( ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑚 ∈ ω ∧ 𝑥 : 𝑚 –1-1-onto→ 𝑦 ) ) → 𝑥 ∈ ( 𝐴 ↑m 𝑚 ) ) |
| 58 | oveq2 | ⊢ ( 𝑛 = 𝑚 → ( 𝐴 ↑m 𝑛 ) = ( 𝐴 ↑m 𝑚 ) ) | |
| 59 | 58 | eleq2d | ⊢ ( 𝑛 = 𝑚 → ( 𝑥 ∈ ( 𝐴 ↑m 𝑛 ) ↔ 𝑥 ∈ ( 𝐴 ↑m 𝑚 ) ) ) |
| 60 | 59 | rspcev | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 ∈ ( 𝐴 ↑m 𝑚 ) ) → ∃ 𝑛 ∈ ω 𝑥 ∈ ( 𝐴 ↑m 𝑛 ) ) |
| 61 | 46 57 60 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑚 ∈ ω ∧ 𝑥 : 𝑚 –1-1-onto→ 𝑦 ) ) → ∃ 𝑛 ∈ ω 𝑥 ∈ ( 𝐴 ↑m 𝑛 ) ) |
| 62 | 61 13 | sylibr | ⊢ ( ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑚 ∈ ω ∧ 𝑥 : 𝑚 –1-1-onto→ 𝑦 ) ) → 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
| 63 | f1ofo | ⊢ ( 𝑥 : 𝑚 –1-1-onto→ 𝑦 → 𝑥 : 𝑚 –onto→ 𝑦 ) | |
| 64 | 63 | ad2antll | ⊢ ( ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑚 ∈ ω ∧ 𝑥 : 𝑚 –1-1-onto→ 𝑦 ) ) → 𝑥 : 𝑚 –onto→ 𝑦 ) |
| 65 | forn | ⊢ ( 𝑥 : 𝑚 –onto→ 𝑦 → ran 𝑥 = 𝑦 ) | |
| 66 | 64 65 | syl | ⊢ ( ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑚 ∈ ω ∧ 𝑥 : 𝑚 –1-1-onto→ 𝑦 ) ) → ran 𝑥 = 𝑦 ) |
| 67 | 66 | eqcomd | ⊢ ( ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑚 ∈ ω ∧ 𝑥 : 𝑚 –1-1-onto→ 𝑦 ) ) → 𝑦 = ran 𝑥 ) |
| 68 | 62 67 | jca | ⊢ ( ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑚 ∈ ω ∧ 𝑥 : 𝑚 –1-1-onto→ 𝑦 ) ) → ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∧ 𝑦 = ran 𝑥 ) ) |
| 69 | 68 | expr | ⊢ ( ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑚 ∈ ω ) → ( 𝑥 : 𝑚 –1-1-onto→ 𝑦 → ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∧ 𝑦 = ran 𝑥 ) ) ) |
| 70 | 69 | eximdv | ⊢ ( ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑚 ∈ ω ) → ( ∃ 𝑥 𝑥 : 𝑚 –1-1-onto→ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∧ 𝑦 = ran 𝑥 ) ) ) |
| 71 | 45 70 | syl5 | ⊢ ( ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑚 ∈ ω ) → ( 𝑦 ≈ 𝑚 → ∃ 𝑥 ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∧ 𝑦 = ran 𝑥 ) ) ) |
| 72 | 71 | rexlimdva | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ∃ 𝑚 ∈ ω 𝑦 ≈ 𝑚 → ∃ 𝑥 ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∧ 𝑦 = ran 𝑥 ) ) ) |
| 73 | 42 72 | mpd | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ∃ 𝑥 ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∧ 𝑦 = ran 𝑥 ) ) |
| 74 | 73 | ex | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → ∃ 𝑥 ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∧ 𝑦 = ran 𝑥 ) ) ) |
| 75 | eqid | ⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ↦ ran 𝑥 ) = ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ↦ ran 𝑥 ) | |
| 76 | 75 | elrnmpt | ⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ran ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ↦ ran 𝑥 ) ↔ ∃ 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) 𝑦 = ran 𝑥 ) ) |
| 77 | 76 | elv | ⊢ ( 𝑦 ∈ ran ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ↦ ran 𝑥 ) ↔ ∃ 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) 𝑦 = ran 𝑥 ) |
| 78 | df-rex | ⊢ ( ∃ 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) 𝑦 = ran 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∧ 𝑦 = ran 𝑥 ) ) | |
| 79 | 77 78 | bitri | ⊢ ( 𝑦 ∈ ran ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ↦ ran 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∧ 𝑦 = ran 𝑥 ) ) |
| 80 | 74 79 | imbitrrdi | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑦 ∈ ran ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ↦ ran 𝑥 ) ) ) |
| 81 | 80 | ssrdv | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝒫 𝐴 ∩ Fin ) ⊆ ran ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ↦ ran 𝑥 ) ) |
| 82 | 38 81 | eqssd | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ran ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ↦ ran 𝑥 ) = ( 𝒫 𝐴 ∩ Fin ) ) |
| 83 | df-fo | ⊢ ( ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ↦ ran 𝑥 ) : ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) –onto→ ( 𝒫 𝐴 ∩ Fin ) ↔ ( ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ↦ ran 𝑥 ) Fn ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∧ ran ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ↦ ran 𝑥 ) = ( 𝒫 𝐴 ∩ Fin ) ) ) | |
| 84 | 37 82 83 | sylanbrc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ↦ ran 𝑥 ) : ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) –onto→ ( 𝒫 𝐴 ∩ Fin ) ) |
| 85 | fodomnum | ⊢ ( ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∈ dom card → ( ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ↦ ran 𝑥 ) : ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) –onto→ ( 𝒫 𝐴 ∩ Fin ) → ( 𝒫 𝐴 ∩ Fin ) ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) ) | |
| 86 | 12 84 85 | sylc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝒫 𝐴 ∩ Fin ) ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
| 87 | domtr | ⊢ ( ( ( 𝒫 𝐴 ∩ Fin ) ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∧ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ≼ 𝐴 ) → ( 𝒫 𝐴 ∩ Fin ) ≼ 𝐴 ) | |
| 88 | 86 10 87 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝒫 𝐴 ∩ Fin ) ≼ 𝐴 ) |
| 89 | pwexg | ⊢ ( 𝐴 ∈ dom card → 𝒫 𝐴 ∈ V ) | |
| 90 | 89 | adantr | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → 𝒫 𝐴 ∈ V ) |
| 91 | inex1g | ⊢ ( 𝒫 𝐴 ∈ V → ( 𝒫 𝐴 ∩ Fin ) ∈ V ) | |
| 92 | 90 91 | syl | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝒫 𝐴 ∩ Fin ) ∈ V ) |
| 93 | infpwfidom | ⊢ ( ( 𝒫 𝐴 ∩ Fin ) ∈ V → 𝐴 ≼ ( 𝒫 𝐴 ∩ Fin ) ) | |
| 94 | 92 93 | syl | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → 𝐴 ≼ ( 𝒫 𝐴 ∩ Fin ) ) |
| 95 | sbth | ⊢ ( ( ( 𝒫 𝐴 ∩ Fin ) ≼ 𝐴 ∧ 𝐴 ≼ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝒫 𝐴 ∩ Fin ) ≈ 𝐴 ) | |
| 96 | 88 94 95 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝒫 𝐴 ∩ Fin ) ≈ 𝐴 ) |