This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite set is not empty. For a shorter proof using ax-un , see infn0ALT . (Contributed by NM, 23-Oct-2004) Avoid ax-un . (Revised by BTernaryTau, 8-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infn0 | ⊢ ( ω ≼ 𝐴 → 𝐴 ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi | ⊢ ( ω ≼ 𝐴 → ∃ 𝑓 𝑓 : ω –1-1→ 𝐴 ) | |
| 2 | peano1 | ⊢ ∅ ∈ ω | |
| 3 | f1f1orn | ⊢ ( 𝑓 : ω –1-1→ 𝐴 → 𝑓 : ω –1-1-onto→ ran 𝑓 ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝑓 : ω –1-1→ 𝐴 ∧ 𝐴 = ∅ ) → 𝑓 : ω –1-1-onto→ ran 𝑓 ) |
| 5 | f1f | ⊢ ( 𝑓 : ω –1-1→ 𝐴 → 𝑓 : ω ⟶ 𝐴 ) | |
| 6 | 5 | frnd | ⊢ ( 𝑓 : ω –1-1→ 𝐴 → ran 𝑓 ⊆ 𝐴 ) |
| 7 | sseq0 | ⊢ ( ( ran 𝑓 ⊆ 𝐴 ∧ 𝐴 = ∅ ) → ran 𝑓 = ∅ ) | |
| 8 | 6 7 | sylan | ⊢ ( ( 𝑓 : ω –1-1→ 𝐴 ∧ 𝐴 = ∅ ) → ran 𝑓 = ∅ ) |
| 9 | 8 | f1oeq3d | ⊢ ( ( 𝑓 : ω –1-1→ 𝐴 ∧ 𝐴 = ∅ ) → ( 𝑓 : ω –1-1-onto→ ran 𝑓 ↔ 𝑓 : ω –1-1-onto→ ∅ ) ) |
| 10 | 4 9 | mpbid | ⊢ ( ( 𝑓 : ω –1-1→ 𝐴 ∧ 𝐴 = ∅ ) → 𝑓 : ω –1-1-onto→ ∅ ) |
| 11 | f1ocnv | ⊢ ( 𝑓 : ω –1-1-onto→ ∅ → ◡ 𝑓 : ∅ –1-1-onto→ ω ) | |
| 12 | noel | ⊢ ¬ ∅ ∈ ∅ | |
| 13 | f1o00 | ⊢ ( ◡ 𝑓 : ∅ –1-1-onto→ ω ↔ ( ◡ 𝑓 = ∅ ∧ ω = ∅ ) ) | |
| 14 | 13 | simprbi | ⊢ ( ◡ 𝑓 : ∅ –1-1-onto→ ω → ω = ∅ ) |
| 15 | 14 | eleq2d | ⊢ ( ◡ 𝑓 : ∅ –1-1-onto→ ω → ( ∅ ∈ ω ↔ ∅ ∈ ∅ ) ) |
| 16 | 12 15 | mtbiri | ⊢ ( ◡ 𝑓 : ∅ –1-1-onto→ ω → ¬ ∅ ∈ ω ) |
| 17 | 10 11 16 | 3syl | ⊢ ( ( 𝑓 : ω –1-1→ 𝐴 ∧ 𝐴 = ∅ ) → ¬ ∅ ∈ ω ) |
| 18 | 2 17 | mt2 | ⊢ ¬ ( 𝑓 : ω –1-1→ 𝐴 ∧ 𝐴 = ∅ ) |
| 19 | 18 | imnani | ⊢ ( 𝑓 : ω –1-1→ 𝐴 → ¬ 𝐴 = ∅ ) |
| 20 | 19 | neqned | ⊢ ( 𝑓 : ω –1-1→ 𝐴 → 𝐴 ≠ ∅ ) |
| 21 | 20 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : ω –1-1→ 𝐴 → 𝐴 ≠ ∅ ) |
| 22 | 1 21 | syl | ⊢ ( ω ≼ 𝐴 → 𝐴 ≠ ∅ ) |