This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of finite intersections of an infinite well-orderable set is equinumerous to the set itself. (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inffien | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( fi ‘ 𝐴 ) ≈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infpwfien | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝒫 𝐴 ∩ Fin ) ≈ 𝐴 ) | |
| 2 | relen | ⊢ Rel ≈ | |
| 3 | 2 | brrelex1i | ⊢ ( ( 𝒫 𝐴 ∩ Fin ) ≈ 𝐴 → ( 𝒫 𝐴 ∩ Fin ) ∈ V ) |
| 4 | 1 3 | syl | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝒫 𝐴 ∩ Fin ) ∈ V ) |
| 5 | difss | ⊢ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ⊆ ( 𝒫 𝐴 ∩ Fin ) | |
| 6 | ssdomg | ⊢ ( ( 𝒫 𝐴 ∩ Fin ) ∈ V → ( ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ⊆ ( 𝒫 𝐴 ∩ Fin ) → ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ≼ ( 𝒫 𝐴 ∩ Fin ) ) ) | |
| 7 | 4 5 6 | mpisyl | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ≼ ( 𝒫 𝐴 ∩ Fin ) ) |
| 8 | domentr | ⊢ ( ( ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ≼ ( 𝒫 𝐴 ∩ Fin ) ∧ ( 𝒫 𝐴 ∩ Fin ) ≈ 𝐴 ) → ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ≼ 𝐴 ) | |
| 9 | 7 1 8 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ≼ 𝐴 ) |
| 10 | numdom | ⊢ ( ( 𝐴 ∈ dom card ∧ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ≼ 𝐴 ) → ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ∈ dom card ) | |
| 11 | 9 10 | syldan | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ∈ dom card ) |
| 12 | eqid | ⊢ ( 𝑥 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ↦ ∩ 𝑥 ) = ( 𝑥 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ↦ ∩ 𝑥 ) | |
| 13 | 12 | fifo | ⊢ ( 𝐴 ∈ dom card → ( 𝑥 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ↦ ∩ 𝑥 ) : ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) –onto→ ( fi ‘ 𝐴 ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝑥 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ↦ ∩ 𝑥 ) : ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) –onto→ ( fi ‘ 𝐴 ) ) |
| 15 | fodomnum | ⊢ ( ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ∈ dom card → ( ( 𝑥 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ↦ ∩ 𝑥 ) : ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) –onto→ ( fi ‘ 𝐴 ) → ( fi ‘ 𝐴 ) ≼ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ) ) | |
| 16 | 11 14 15 | sylc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( fi ‘ 𝐴 ) ≼ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ) |
| 17 | domtr | ⊢ ( ( ( fi ‘ 𝐴 ) ≼ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ∧ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ≼ 𝐴 ) → ( fi ‘ 𝐴 ) ≼ 𝐴 ) | |
| 18 | 16 9 17 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( fi ‘ 𝐴 ) ≼ 𝐴 ) |
| 19 | fvex | ⊢ ( fi ‘ 𝐴 ) ∈ V | |
| 20 | ssfii | ⊢ ( 𝐴 ∈ dom card → 𝐴 ⊆ ( fi ‘ 𝐴 ) ) | |
| 21 | 20 | adantr | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → 𝐴 ⊆ ( fi ‘ 𝐴 ) ) |
| 22 | ssdomg | ⊢ ( ( fi ‘ 𝐴 ) ∈ V → ( 𝐴 ⊆ ( fi ‘ 𝐴 ) → 𝐴 ≼ ( fi ‘ 𝐴 ) ) ) | |
| 23 | 19 21 22 | mpsyl | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → 𝐴 ≼ ( fi ‘ 𝐴 ) ) |
| 24 | sbth | ⊢ ( ( ( fi ‘ 𝐴 ) ≼ 𝐴 ∧ 𝐴 ≼ ( fi ‘ 𝐴 ) ) → ( fi ‘ 𝐴 ) ≈ 𝐴 ) | |
| 25 | 18 23 24 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( fi ‘ 𝐴 ) ≈ 𝐴 ) |