This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any infinite well-orderable set is equinumerous to its set of finite subsets. (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infpwfien | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( ~P A i^i Fin ) ~~ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infxpidm2 | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( A X. A ) ~~ A ) |
|
| 2 | infn0 | |- ( _om ~<_ A -> A =/= (/) ) |
|
| 3 | 2 | adantl | |- ( ( A e. dom card /\ _om ~<_ A ) -> A =/= (/) ) |
| 4 | fseqen | |- ( ( ( A X. A ) ~~ A /\ A =/= (/) ) -> U_ n e. _om ( A ^m n ) ~~ ( _om X. A ) ) |
|
| 5 | 1 3 4 | syl2anc | |- ( ( A e. dom card /\ _om ~<_ A ) -> U_ n e. _om ( A ^m n ) ~~ ( _om X. A ) ) |
| 6 | xpdom1g | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( _om X. A ) ~<_ ( A X. A ) ) |
|
| 7 | domentr | |- ( ( ( _om X. A ) ~<_ ( A X. A ) /\ ( A X. A ) ~~ A ) -> ( _om X. A ) ~<_ A ) |
|
| 8 | 6 1 7 | syl2anc | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( _om X. A ) ~<_ A ) |
| 9 | endomtr | |- ( ( U_ n e. _om ( A ^m n ) ~~ ( _om X. A ) /\ ( _om X. A ) ~<_ A ) -> U_ n e. _om ( A ^m n ) ~<_ A ) |
|
| 10 | 5 8 9 | syl2anc | |- ( ( A e. dom card /\ _om ~<_ A ) -> U_ n e. _om ( A ^m n ) ~<_ A ) |
| 11 | numdom | |- ( ( A e. dom card /\ U_ n e. _om ( A ^m n ) ~<_ A ) -> U_ n e. _om ( A ^m n ) e. dom card ) |
|
| 12 | 10 11 | syldan | |- ( ( A e. dom card /\ _om ~<_ A ) -> U_ n e. _om ( A ^m n ) e. dom card ) |
| 13 | eliun | |- ( x e. U_ n e. _om ( A ^m n ) <-> E. n e. _om x e. ( A ^m n ) ) |
|
| 14 | elmapi | |- ( x e. ( A ^m n ) -> x : n --> A ) |
|
| 15 | 14 | ad2antll | |- ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( n e. _om /\ x e. ( A ^m n ) ) ) -> x : n --> A ) |
| 16 | 15 | frnd | |- ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( n e. _om /\ x e. ( A ^m n ) ) ) -> ran x C_ A ) |
| 17 | vex | |- x e. _V |
|
| 18 | 17 | rnex | |- ran x e. _V |
| 19 | 18 | elpw | |- ( ran x e. ~P A <-> ran x C_ A ) |
| 20 | 16 19 | sylibr | |- ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( n e. _om /\ x e. ( A ^m n ) ) ) -> ran x e. ~P A ) |
| 21 | simprl | |- ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( n e. _om /\ x e. ( A ^m n ) ) ) -> n e. _om ) |
|
| 22 | ssid | |- n C_ n |
|
| 23 | ssnnfi | |- ( ( n e. _om /\ n C_ n ) -> n e. Fin ) |
|
| 24 | 21 22 23 | sylancl | |- ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( n e. _om /\ x e. ( A ^m n ) ) ) -> n e. Fin ) |
| 25 | ffn | |- ( x : n --> A -> x Fn n ) |
|
| 26 | dffn4 | |- ( x Fn n <-> x : n -onto-> ran x ) |
|
| 27 | 25 26 | sylib | |- ( x : n --> A -> x : n -onto-> ran x ) |
| 28 | 15 27 | syl | |- ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( n e. _om /\ x e. ( A ^m n ) ) ) -> x : n -onto-> ran x ) |
| 29 | fofi | |- ( ( n e. Fin /\ x : n -onto-> ran x ) -> ran x e. Fin ) |
|
| 30 | 24 28 29 | syl2anc | |- ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( n e. _om /\ x e. ( A ^m n ) ) ) -> ran x e. Fin ) |
| 31 | 20 30 | elind | |- ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( n e. _om /\ x e. ( A ^m n ) ) ) -> ran x e. ( ~P A i^i Fin ) ) |
| 32 | 31 | expr | |- ( ( ( A e. dom card /\ _om ~<_ A ) /\ n e. _om ) -> ( x e. ( A ^m n ) -> ran x e. ( ~P A i^i Fin ) ) ) |
| 33 | 32 | rexlimdva | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( E. n e. _om x e. ( A ^m n ) -> ran x e. ( ~P A i^i Fin ) ) ) |
| 34 | 13 33 | biimtrid | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( x e. U_ n e. _om ( A ^m n ) -> ran x e. ( ~P A i^i Fin ) ) ) |
| 35 | 34 | imp | |- ( ( ( A e. dom card /\ _om ~<_ A ) /\ x e. U_ n e. _om ( A ^m n ) ) -> ran x e. ( ~P A i^i Fin ) ) |
| 36 | 35 | fmpttd | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( x e. U_ n e. _om ( A ^m n ) |-> ran x ) : U_ n e. _om ( A ^m n ) --> ( ~P A i^i Fin ) ) |
| 37 | 36 | ffnd | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( x e. U_ n e. _om ( A ^m n ) |-> ran x ) Fn U_ n e. _om ( A ^m n ) ) |
| 38 | 36 | frnd | |- ( ( A e. dom card /\ _om ~<_ A ) -> ran ( x e. U_ n e. _om ( A ^m n ) |-> ran x ) C_ ( ~P A i^i Fin ) ) |
| 39 | simpr | |- ( ( ( A e. dom card /\ _om ~<_ A ) /\ y e. ( ~P A i^i Fin ) ) -> y e. ( ~P A i^i Fin ) ) |
|
| 40 | 39 | elin2d | |- ( ( ( A e. dom card /\ _om ~<_ A ) /\ y e. ( ~P A i^i Fin ) ) -> y e. Fin ) |
| 41 | isfi | |- ( y e. Fin <-> E. m e. _om y ~~ m ) |
|
| 42 | 40 41 | sylib | |- ( ( ( A e. dom card /\ _om ~<_ A ) /\ y e. ( ~P A i^i Fin ) ) -> E. m e. _om y ~~ m ) |
| 43 | ensym | |- ( y ~~ m -> m ~~ y ) |
|
| 44 | bren | |- ( m ~~ y <-> E. x x : m -1-1-onto-> y ) |
|
| 45 | 43 44 | sylib | |- ( y ~~ m -> E. x x : m -1-1-onto-> y ) |
| 46 | simprl | |- ( ( ( ( A e. dom card /\ _om ~<_ A ) /\ y e. ( ~P A i^i Fin ) ) /\ ( m e. _om /\ x : m -1-1-onto-> y ) ) -> m e. _om ) |
|
| 47 | f1of | |- ( x : m -1-1-onto-> y -> x : m --> y ) |
|
| 48 | 47 | ad2antll | |- ( ( ( ( A e. dom card /\ _om ~<_ A ) /\ y e. ( ~P A i^i Fin ) ) /\ ( m e. _om /\ x : m -1-1-onto-> y ) ) -> x : m --> y ) |
| 49 | simplr | |- ( ( ( ( A e. dom card /\ _om ~<_ A ) /\ y e. ( ~P A i^i Fin ) ) /\ ( m e. _om /\ x : m -1-1-onto-> y ) ) -> y e. ( ~P A i^i Fin ) ) |
|
| 50 | 49 | elin1d | |- ( ( ( ( A e. dom card /\ _om ~<_ A ) /\ y e. ( ~P A i^i Fin ) ) /\ ( m e. _om /\ x : m -1-1-onto-> y ) ) -> y e. ~P A ) |
| 51 | 50 | elpwid | |- ( ( ( ( A e. dom card /\ _om ~<_ A ) /\ y e. ( ~P A i^i Fin ) ) /\ ( m e. _om /\ x : m -1-1-onto-> y ) ) -> y C_ A ) |
| 52 | 48 51 | fssd | |- ( ( ( ( A e. dom card /\ _om ~<_ A ) /\ y e. ( ~P A i^i Fin ) ) /\ ( m e. _om /\ x : m -1-1-onto-> y ) ) -> x : m --> A ) |
| 53 | simplll | |- ( ( ( ( A e. dom card /\ _om ~<_ A ) /\ y e. ( ~P A i^i Fin ) ) /\ ( m e. _om /\ x : m -1-1-onto-> y ) ) -> A e. dom card ) |
|
| 54 | vex | |- m e. _V |
|
| 55 | elmapg | |- ( ( A e. dom card /\ m e. _V ) -> ( x e. ( A ^m m ) <-> x : m --> A ) ) |
|
| 56 | 53 54 55 | sylancl | |- ( ( ( ( A e. dom card /\ _om ~<_ A ) /\ y e. ( ~P A i^i Fin ) ) /\ ( m e. _om /\ x : m -1-1-onto-> y ) ) -> ( x e. ( A ^m m ) <-> x : m --> A ) ) |
| 57 | 52 56 | mpbird | |- ( ( ( ( A e. dom card /\ _om ~<_ A ) /\ y e. ( ~P A i^i Fin ) ) /\ ( m e. _om /\ x : m -1-1-onto-> y ) ) -> x e. ( A ^m m ) ) |
| 58 | oveq2 | |- ( n = m -> ( A ^m n ) = ( A ^m m ) ) |
|
| 59 | 58 | eleq2d | |- ( n = m -> ( x e. ( A ^m n ) <-> x e. ( A ^m m ) ) ) |
| 60 | 59 | rspcev | |- ( ( m e. _om /\ x e. ( A ^m m ) ) -> E. n e. _om x e. ( A ^m n ) ) |
| 61 | 46 57 60 | syl2anc | |- ( ( ( ( A e. dom card /\ _om ~<_ A ) /\ y e. ( ~P A i^i Fin ) ) /\ ( m e. _om /\ x : m -1-1-onto-> y ) ) -> E. n e. _om x e. ( A ^m n ) ) |
| 62 | 61 13 | sylibr | |- ( ( ( ( A e. dom card /\ _om ~<_ A ) /\ y e. ( ~P A i^i Fin ) ) /\ ( m e. _om /\ x : m -1-1-onto-> y ) ) -> x e. U_ n e. _om ( A ^m n ) ) |
| 63 | f1ofo | |- ( x : m -1-1-onto-> y -> x : m -onto-> y ) |
|
| 64 | 63 | ad2antll | |- ( ( ( ( A e. dom card /\ _om ~<_ A ) /\ y e. ( ~P A i^i Fin ) ) /\ ( m e. _om /\ x : m -1-1-onto-> y ) ) -> x : m -onto-> y ) |
| 65 | forn | |- ( x : m -onto-> y -> ran x = y ) |
|
| 66 | 64 65 | syl | |- ( ( ( ( A e. dom card /\ _om ~<_ A ) /\ y e. ( ~P A i^i Fin ) ) /\ ( m e. _om /\ x : m -1-1-onto-> y ) ) -> ran x = y ) |
| 67 | 66 | eqcomd | |- ( ( ( ( A e. dom card /\ _om ~<_ A ) /\ y e. ( ~P A i^i Fin ) ) /\ ( m e. _om /\ x : m -1-1-onto-> y ) ) -> y = ran x ) |
| 68 | 62 67 | jca | |- ( ( ( ( A e. dom card /\ _om ~<_ A ) /\ y e. ( ~P A i^i Fin ) ) /\ ( m e. _om /\ x : m -1-1-onto-> y ) ) -> ( x e. U_ n e. _om ( A ^m n ) /\ y = ran x ) ) |
| 69 | 68 | expr | |- ( ( ( ( A e. dom card /\ _om ~<_ A ) /\ y e. ( ~P A i^i Fin ) ) /\ m e. _om ) -> ( x : m -1-1-onto-> y -> ( x e. U_ n e. _om ( A ^m n ) /\ y = ran x ) ) ) |
| 70 | 69 | eximdv | |- ( ( ( ( A e. dom card /\ _om ~<_ A ) /\ y e. ( ~P A i^i Fin ) ) /\ m e. _om ) -> ( E. x x : m -1-1-onto-> y -> E. x ( x e. U_ n e. _om ( A ^m n ) /\ y = ran x ) ) ) |
| 71 | 45 70 | syl5 | |- ( ( ( ( A e. dom card /\ _om ~<_ A ) /\ y e. ( ~P A i^i Fin ) ) /\ m e. _om ) -> ( y ~~ m -> E. x ( x e. U_ n e. _om ( A ^m n ) /\ y = ran x ) ) ) |
| 72 | 71 | rexlimdva | |- ( ( ( A e. dom card /\ _om ~<_ A ) /\ y e. ( ~P A i^i Fin ) ) -> ( E. m e. _om y ~~ m -> E. x ( x e. U_ n e. _om ( A ^m n ) /\ y = ran x ) ) ) |
| 73 | 42 72 | mpd | |- ( ( ( A e. dom card /\ _om ~<_ A ) /\ y e. ( ~P A i^i Fin ) ) -> E. x ( x e. U_ n e. _om ( A ^m n ) /\ y = ran x ) ) |
| 74 | 73 | ex | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( y e. ( ~P A i^i Fin ) -> E. x ( x e. U_ n e. _om ( A ^m n ) /\ y = ran x ) ) ) |
| 75 | eqid | |- ( x e. U_ n e. _om ( A ^m n ) |-> ran x ) = ( x e. U_ n e. _om ( A ^m n ) |-> ran x ) |
|
| 76 | 75 | elrnmpt | |- ( y e. _V -> ( y e. ran ( x e. U_ n e. _om ( A ^m n ) |-> ran x ) <-> E. x e. U_ n e. _om ( A ^m n ) y = ran x ) ) |
| 77 | 76 | elv | |- ( y e. ran ( x e. U_ n e. _om ( A ^m n ) |-> ran x ) <-> E. x e. U_ n e. _om ( A ^m n ) y = ran x ) |
| 78 | df-rex | |- ( E. x e. U_ n e. _om ( A ^m n ) y = ran x <-> E. x ( x e. U_ n e. _om ( A ^m n ) /\ y = ran x ) ) |
|
| 79 | 77 78 | bitri | |- ( y e. ran ( x e. U_ n e. _om ( A ^m n ) |-> ran x ) <-> E. x ( x e. U_ n e. _om ( A ^m n ) /\ y = ran x ) ) |
| 80 | 74 79 | imbitrrdi | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( y e. ( ~P A i^i Fin ) -> y e. ran ( x e. U_ n e. _om ( A ^m n ) |-> ran x ) ) ) |
| 81 | 80 | ssrdv | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( ~P A i^i Fin ) C_ ran ( x e. U_ n e. _om ( A ^m n ) |-> ran x ) ) |
| 82 | 38 81 | eqssd | |- ( ( A e. dom card /\ _om ~<_ A ) -> ran ( x e. U_ n e. _om ( A ^m n ) |-> ran x ) = ( ~P A i^i Fin ) ) |
| 83 | df-fo | |- ( ( x e. U_ n e. _om ( A ^m n ) |-> ran x ) : U_ n e. _om ( A ^m n ) -onto-> ( ~P A i^i Fin ) <-> ( ( x e. U_ n e. _om ( A ^m n ) |-> ran x ) Fn U_ n e. _om ( A ^m n ) /\ ran ( x e. U_ n e. _om ( A ^m n ) |-> ran x ) = ( ~P A i^i Fin ) ) ) |
|
| 84 | 37 82 83 | sylanbrc | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( x e. U_ n e. _om ( A ^m n ) |-> ran x ) : U_ n e. _om ( A ^m n ) -onto-> ( ~P A i^i Fin ) ) |
| 85 | fodomnum | |- ( U_ n e. _om ( A ^m n ) e. dom card -> ( ( x e. U_ n e. _om ( A ^m n ) |-> ran x ) : U_ n e. _om ( A ^m n ) -onto-> ( ~P A i^i Fin ) -> ( ~P A i^i Fin ) ~<_ U_ n e. _om ( A ^m n ) ) ) |
|
| 86 | 12 84 85 | sylc | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( ~P A i^i Fin ) ~<_ U_ n e. _om ( A ^m n ) ) |
| 87 | domtr | |- ( ( ( ~P A i^i Fin ) ~<_ U_ n e. _om ( A ^m n ) /\ U_ n e. _om ( A ^m n ) ~<_ A ) -> ( ~P A i^i Fin ) ~<_ A ) |
|
| 88 | 86 10 87 | syl2anc | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( ~P A i^i Fin ) ~<_ A ) |
| 89 | pwexg | |- ( A e. dom card -> ~P A e. _V ) |
|
| 90 | 89 | adantr | |- ( ( A e. dom card /\ _om ~<_ A ) -> ~P A e. _V ) |
| 91 | inex1g | |- ( ~P A e. _V -> ( ~P A i^i Fin ) e. _V ) |
|
| 92 | 90 91 | syl | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( ~P A i^i Fin ) e. _V ) |
| 93 | infpwfidom | |- ( ( ~P A i^i Fin ) e. _V -> A ~<_ ( ~P A i^i Fin ) ) |
|
| 94 | 92 93 | syl | |- ( ( A e. dom card /\ _om ~<_ A ) -> A ~<_ ( ~P A i^i Fin ) ) |
| 95 | sbth | |- ( ( ( ~P A i^i Fin ) ~<_ A /\ A ~<_ ( ~P A i^i Fin ) ) -> ( ~P A i^i Fin ) ~~ A ) |
|
| 96 | 88 94 95 | syl2anc | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( ~P A i^i Fin ) ~~ A ) |