This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | seqeq3 | ⊢ ( 𝐹 = 𝐺 → seq 𝑀 ( + , 𝐹 ) = seq 𝑀 ( + , 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 | ⊢ ( 𝐹 = 𝐺 → ( 𝐹 ‘ ( 𝑥 + 1 ) ) = ( 𝐺 ‘ ( 𝑥 + 1 ) ) ) | |
| 2 | 1 | oveq2d | ⊢ ( 𝐹 = 𝐺 → ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) = ( 𝑦 + ( 𝐺 ‘ ( 𝑥 + 1 ) ) ) ) |
| 3 | 2 | opeq2d | ⊢ ( 𝐹 = 𝐺 → 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) 〉 = 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐺 ‘ ( 𝑥 + 1 ) ) ) 〉 ) |
| 4 | 3 | mpoeq3dv | ⊢ ( 𝐹 = 𝐺 → ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) 〉 ) = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐺 ‘ ( 𝑥 + 1 ) ) ) 〉 ) ) |
| 5 | fveq1 | ⊢ ( 𝐹 = 𝐺 → ( 𝐹 ‘ 𝑀 ) = ( 𝐺 ‘ 𝑀 ) ) | |
| 6 | 5 | opeq2d | ⊢ ( 𝐹 = 𝐺 → 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 = 〈 𝑀 , ( 𝐺 ‘ 𝑀 ) 〉 ) |
| 7 | rdgeq12 | ⊢ ( ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) 〉 ) = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐺 ‘ ( 𝑥 + 1 ) ) ) 〉 ) ∧ 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 = 〈 𝑀 , ( 𝐺 ‘ 𝑀 ) 〉 ) → rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) = rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐺 ‘ ( 𝑥 + 1 ) ) ) 〉 ) , 〈 𝑀 , ( 𝐺 ‘ 𝑀 ) 〉 ) ) | |
| 8 | 4 6 7 | syl2anc | ⊢ ( 𝐹 = 𝐺 → rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) = rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐺 ‘ ( 𝑥 + 1 ) ) ) 〉 ) , 〈 𝑀 , ( 𝐺 ‘ 𝑀 ) 〉 ) ) |
| 9 | 8 | imaeq1d | ⊢ ( 𝐹 = 𝐺 → ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) “ ω ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐺 ‘ ( 𝑥 + 1 ) ) ) 〉 ) , 〈 𝑀 , ( 𝐺 ‘ 𝑀 ) 〉 ) “ ω ) ) |
| 10 | df-seq | ⊢ seq 𝑀 ( + , 𝐹 ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) “ ω ) | |
| 11 | df-seq | ⊢ seq 𝑀 ( + , 𝐺 ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐺 ‘ ( 𝑥 + 1 ) ) ) 〉 ) , 〈 𝑀 , ( 𝐺 ‘ 𝑀 ) 〉 ) “ ω ) | |
| 12 | 9 10 11 | 3eqtr4g | ⊢ ( 𝐹 = 𝐺 → seq 𝑀 ( + , 𝐹 ) = seq 𝑀 ( + , 𝐺 ) ) |