This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for heibor . The last remaining piece of the proof is to find an element C such that C G 0 , i.e. C is an element of ( F0 ) that has no finite subcover, which is true by heiborlem1 , since ( F0 ) is a finite cover of X , which has no finite subcover. Thus, the rest of the proof follows to a contradiction, and thus there must be a finite subcover of U that covers X , i.e. X is compact. (Contributed by Jeff Madsen, 22-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | heibor.1 | |- J = ( MetOpen ` D ) |
|
| heibor.3 | |- K = { u | -. E. v e. ( ~P U i^i Fin ) u C_ U. v } |
||
| heibor.4 | |- G = { <. y , n >. | ( n e. NN0 /\ y e. ( F ` n ) /\ ( y B n ) e. K ) } |
||
| heibor.5 | |- B = ( z e. X , m e. NN0 |-> ( z ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) ) |
||
| heibor.6 | |- ( ph -> D e. ( CMet ` X ) ) |
||
| heibor.7 | |- ( ph -> F : NN0 --> ( ~P X i^i Fin ) ) |
||
| heibor.8 | |- ( ph -> A. n e. NN0 X = U_ y e. ( F ` n ) ( y B n ) ) |
||
| Assertion | heiborlem10 | |- ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) -> E. v e. ( ~P U i^i Fin ) U. J = U. v ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | heibor.1 | |- J = ( MetOpen ` D ) |
|
| 2 | heibor.3 | |- K = { u | -. E. v e. ( ~P U i^i Fin ) u C_ U. v } |
|
| 3 | heibor.4 | |- G = { <. y , n >. | ( n e. NN0 /\ y e. ( F ` n ) /\ ( y B n ) e. K ) } |
|
| 4 | heibor.5 | |- B = ( z e. X , m e. NN0 |-> ( z ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) ) |
|
| 5 | heibor.6 | |- ( ph -> D e. ( CMet ` X ) ) |
|
| 6 | heibor.7 | |- ( ph -> F : NN0 --> ( ~P X i^i Fin ) ) |
|
| 7 | heibor.8 | |- ( ph -> A. n e. NN0 X = U_ y e. ( F ` n ) ( y B n ) ) |
|
| 8 | 0nn0 | |- 0 e. NN0 |
|
| 9 | inss2 | |- ( ~P X i^i Fin ) C_ Fin |
|
| 10 | ffvelcdm | |- ( ( F : NN0 --> ( ~P X i^i Fin ) /\ 0 e. NN0 ) -> ( F ` 0 ) e. ( ~P X i^i Fin ) ) |
|
| 11 | 9 10 | sselid | |- ( ( F : NN0 --> ( ~P X i^i Fin ) /\ 0 e. NN0 ) -> ( F ` 0 ) e. Fin ) |
| 12 | 6 8 11 | sylancl | |- ( ph -> ( F ` 0 ) e. Fin ) |
| 13 | fveq2 | |- ( n = 0 -> ( F ` n ) = ( F ` 0 ) ) |
|
| 14 | oveq2 | |- ( n = 0 -> ( y B n ) = ( y B 0 ) ) |
|
| 15 | 13 14 | iuneq12d | |- ( n = 0 -> U_ y e. ( F ` n ) ( y B n ) = U_ y e. ( F ` 0 ) ( y B 0 ) ) |
| 16 | 15 | eqeq2d | |- ( n = 0 -> ( X = U_ y e. ( F ` n ) ( y B n ) <-> X = U_ y e. ( F ` 0 ) ( y B 0 ) ) ) |
| 17 | 16 | rspccva | |- ( ( A. n e. NN0 X = U_ y e. ( F ` n ) ( y B n ) /\ 0 e. NN0 ) -> X = U_ y e. ( F ` 0 ) ( y B 0 ) ) |
| 18 | 7 8 17 | sylancl | |- ( ph -> X = U_ y e. ( F ` 0 ) ( y B 0 ) ) |
| 19 | eqimss | |- ( X = U_ y e. ( F ` 0 ) ( y B 0 ) -> X C_ U_ y e. ( F ` 0 ) ( y B 0 ) ) |
|
| 20 | 18 19 | syl | |- ( ph -> X C_ U_ y e. ( F ` 0 ) ( y B 0 ) ) |
| 21 | ovex | |- ( y B 0 ) e. _V |
|
| 22 | 1 2 21 | heiborlem1 | |- ( ( ( F ` 0 ) e. Fin /\ X C_ U_ y e. ( F ` 0 ) ( y B 0 ) /\ X e. K ) -> E. y e. ( F ` 0 ) ( y B 0 ) e. K ) |
| 23 | oveq1 | |- ( y = x -> ( y B 0 ) = ( x B 0 ) ) |
|
| 24 | 23 | eleq1d | |- ( y = x -> ( ( y B 0 ) e. K <-> ( x B 0 ) e. K ) ) |
| 25 | 24 | cbvrexvw | |- ( E. y e. ( F ` 0 ) ( y B 0 ) e. K <-> E. x e. ( F ` 0 ) ( x B 0 ) e. K ) |
| 26 | 22 25 | sylib | |- ( ( ( F ` 0 ) e. Fin /\ X C_ U_ y e. ( F ` 0 ) ( y B 0 ) /\ X e. K ) -> E. x e. ( F ` 0 ) ( x B 0 ) e. K ) |
| 27 | 26 | 3expia | |- ( ( ( F ` 0 ) e. Fin /\ X C_ U_ y e. ( F ` 0 ) ( y B 0 ) ) -> ( X e. K -> E. x e. ( F ` 0 ) ( x B 0 ) e. K ) ) |
| 28 | 12 20 27 | syl2anc | |- ( ph -> ( X e. K -> E. x e. ( F ` 0 ) ( x B 0 ) e. K ) ) |
| 29 | 28 | adantr | |- ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) -> ( X e. K -> E. x e. ( F ` 0 ) ( x B 0 ) e. K ) ) |
| 30 | vex | |- x e. _V |
|
| 31 | c0ex | |- 0 e. _V |
|
| 32 | 1 2 3 30 31 | heiborlem2 | |- ( x G 0 <-> ( 0 e. NN0 /\ x e. ( F ` 0 ) /\ ( x B 0 ) e. K ) ) |
| 33 | 1 2 3 4 5 6 7 | heiborlem3 | |- ( ph -> E. g A. x e. G ( ( g ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( g ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) |
| 34 | 33 | ad2antrr | |- ( ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) /\ x G 0 ) -> E. g A. x e. G ( ( g ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( g ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) |
| 35 | 5 | ad2antrr | |- ( ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) /\ ( x G 0 /\ A. x e. G ( ( g ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( g ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) ) -> D e. ( CMet ` X ) ) |
| 36 | 6 | ad2antrr | |- ( ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) /\ ( x G 0 /\ A. x e. G ( ( g ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( g ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) ) -> F : NN0 --> ( ~P X i^i Fin ) ) |
| 37 | 7 | ad2antrr | |- ( ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) /\ ( x G 0 /\ A. x e. G ( ( g ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( g ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) ) -> A. n e. NN0 X = U_ y e. ( F ` n ) ( y B n ) ) |
| 38 | simprr | |- ( ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) /\ ( x G 0 /\ A. x e. G ( ( g ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( g ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) ) -> A. x e. G ( ( g ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( g ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) |
|
| 39 | fveq2 | |- ( x = t -> ( g ` x ) = ( g ` t ) ) |
|
| 40 | fveq2 | |- ( x = t -> ( 2nd ` x ) = ( 2nd ` t ) ) |
|
| 41 | 40 | oveq1d | |- ( x = t -> ( ( 2nd ` x ) + 1 ) = ( ( 2nd ` t ) + 1 ) ) |
| 42 | 39 41 | breq12d | |- ( x = t -> ( ( g ` x ) G ( ( 2nd ` x ) + 1 ) <-> ( g ` t ) G ( ( 2nd ` t ) + 1 ) ) ) |
| 43 | fveq2 | |- ( x = t -> ( B ` x ) = ( B ` t ) ) |
|
| 44 | 39 41 | oveq12d | |- ( x = t -> ( ( g ` x ) B ( ( 2nd ` x ) + 1 ) ) = ( ( g ` t ) B ( ( 2nd ` t ) + 1 ) ) ) |
| 45 | 43 44 | ineq12d | |- ( x = t -> ( ( B ` x ) i^i ( ( g ` x ) B ( ( 2nd ` x ) + 1 ) ) ) = ( ( B ` t ) i^i ( ( g ` t ) B ( ( 2nd ` t ) + 1 ) ) ) ) |
| 46 | 45 | eleq1d | |- ( x = t -> ( ( ( B ` x ) i^i ( ( g ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K <-> ( ( B ` t ) i^i ( ( g ` t ) B ( ( 2nd ` t ) + 1 ) ) ) e. K ) ) |
| 47 | 42 46 | anbi12d | |- ( x = t -> ( ( ( g ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( g ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) <-> ( ( g ` t ) G ( ( 2nd ` t ) + 1 ) /\ ( ( B ` t ) i^i ( ( g ` t ) B ( ( 2nd ` t ) + 1 ) ) ) e. K ) ) ) |
| 48 | 47 | cbvralvw | |- ( A. x e. G ( ( g ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( g ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) <-> A. t e. G ( ( g ` t ) G ( ( 2nd ` t ) + 1 ) /\ ( ( B ` t ) i^i ( ( g ` t ) B ( ( 2nd ` t ) + 1 ) ) ) e. K ) ) |
| 49 | 38 48 | sylib | |- ( ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) /\ ( x G 0 /\ A. x e. G ( ( g ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( g ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) ) -> A. t e. G ( ( g ` t ) G ( ( 2nd ` t ) + 1 ) /\ ( ( B ` t ) i^i ( ( g ` t ) B ( ( 2nd ` t ) + 1 ) ) ) e. K ) ) |
| 50 | simprl | |- ( ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) /\ ( x G 0 /\ A. x e. G ( ( g ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( g ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) ) -> x G 0 ) |
|
| 51 | eqeq1 | |- ( g = m -> ( g = 0 <-> m = 0 ) ) |
|
| 52 | oveq1 | |- ( g = m -> ( g - 1 ) = ( m - 1 ) ) |
|
| 53 | 51 52 | ifbieq2d | |- ( g = m -> if ( g = 0 , x , ( g - 1 ) ) = if ( m = 0 , x , ( m - 1 ) ) ) |
| 54 | 53 | cbvmptv | |- ( g e. NN0 |-> if ( g = 0 , x , ( g - 1 ) ) ) = ( m e. NN0 |-> if ( m = 0 , x , ( m - 1 ) ) ) |
| 55 | seqeq3 | |- ( ( g e. NN0 |-> if ( g = 0 , x , ( g - 1 ) ) ) = ( m e. NN0 |-> if ( m = 0 , x , ( m - 1 ) ) ) -> seq 0 ( g , ( g e. NN0 |-> if ( g = 0 , x , ( g - 1 ) ) ) ) = seq 0 ( g , ( m e. NN0 |-> if ( m = 0 , x , ( m - 1 ) ) ) ) ) |
|
| 56 | 54 55 | ax-mp | |- seq 0 ( g , ( g e. NN0 |-> if ( g = 0 , x , ( g - 1 ) ) ) ) = seq 0 ( g , ( m e. NN0 |-> if ( m = 0 , x , ( m - 1 ) ) ) ) |
| 57 | eqid | |- ( n e. NN |-> <. ( seq 0 ( g , ( g e. NN0 |-> if ( g = 0 , x , ( g - 1 ) ) ) ) ` n ) , ( 3 / ( 2 ^ n ) ) >. ) = ( n e. NN |-> <. ( seq 0 ( g , ( g e. NN0 |-> if ( g = 0 , x , ( g - 1 ) ) ) ) ` n ) , ( 3 / ( 2 ^ n ) ) >. ) |
|
| 58 | simplrl | |- ( ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) /\ ( x G 0 /\ A. x e. G ( ( g ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( g ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) ) -> U C_ J ) |
|
| 59 | cmetmet | |- ( D e. ( CMet ` X ) -> D e. ( Met ` X ) ) |
|
| 60 | metxmet | |- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 61 | 1 | mopnuni | |- ( D e. ( *Met ` X ) -> X = U. J ) |
| 62 | 5 59 60 61 | 4syl | |- ( ph -> X = U. J ) |
| 63 | 62 | adantr | |- ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) -> X = U. J ) |
| 64 | simprr | |- ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) -> U. J = U. U ) |
|
| 65 | 63 64 | eqtr2d | |- ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) -> U. U = X ) |
| 66 | 65 | adantr | |- ( ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) /\ ( x G 0 /\ A. x e. G ( ( g ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( g ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) ) -> U. U = X ) |
| 67 | 1 2 3 4 35 36 37 49 50 56 57 58 66 | heiborlem9 | |- ( ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) /\ ( x G 0 /\ A. x e. G ( ( g ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( g ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) ) -> -. X e. K ) |
| 68 | 67 | expr | |- ( ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) /\ x G 0 ) -> ( A. x e. G ( ( g ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( g ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) -> -. X e. K ) ) |
| 69 | 68 | exlimdv | |- ( ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) /\ x G 0 ) -> ( E. g A. x e. G ( ( g ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( g ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) -> -. X e. K ) ) |
| 70 | 34 69 | mpd | |- ( ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) /\ x G 0 ) -> -. X e. K ) |
| 71 | 32 70 | sylan2br | |- ( ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) /\ ( 0 e. NN0 /\ x e. ( F ` 0 ) /\ ( x B 0 ) e. K ) ) -> -. X e. K ) |
| 72 | 71 | 3exp2 | |- ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) -> ( 0 e. NN0 -> ( x e. ( F ` 0 ) -> ( ( x B 0 ) e. K -> -. X e. K ) ) ) ) |
| 73 | 8 72 | mpi | |- ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) -> ( x e. ( F ` 0 ) -> ( ( x B 0 ) e. K -> -. X e. K ) ) ) |
| 74 | 73 | rexlimdv | |- ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) -> ( E. x e. ( F ` 0 ) ( x B 0 ) e. K -> -. X e. K ) ) |
| 75 | 29 74 | syld | |- ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) -> ( X e. K -> -. X e. K ) ) |
| 76 | 75 | pm2.01d | |- ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) -> -. X e. K ) |
| 77 | elfvdm | |- ( D e. ( CMet ` X ) -> X e. dom CMet ) |
|
| 78 | sseq1 | |- ( u = X -> ( u C_ U. v <-> X C_ U. v ) ) |
|
| 79 | 78 | rexbidv | |- ( u = X -> ( E. v e. ( ~P U i^i Fin ) u C_ U. v <-> E. v e. ( ~P U i^i Fin ) X C_ U. v ) ) |
| 80 | 79 | notbid | |- ( u = X -> ( -. E. v e. ( ~P U i^i Fin ) u C_ U. v <-> -. E. v e. ( ~P U i^i Fin ) X C_ U. v ) ) |
| 81 | 80 2 | elab2g | |- ( X e. dom CMet -> ( X e. K <-> -. E. v e. ( ~P U i^i Fin ) X C_ U. v ) ) |
| 82 | 5 77 81 | 3syl | |- ( ph -> ( X e. K <-> -. E. v e. ( ~P U i^i Fin ) X C_ U. v ) ) |
| 83 | 82 | adantr | |- ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) -> ( X e. K <-> -. E. v e. ( ~P U i^i Fin ) X C_ U. v ) ) |
| 84 | 83 | con2bid | |- ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) -> ( E. v e. ( ~P U i^i Fin ) X C_ U. v <-> -. X e. K ) ) |
| 85 | 76 84 | mpbird | |- ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) -> E. v e. ( ~P U i^i Fin ) X C_ U. v ) |
| 86 | 62 | ad2antrr | |- ( ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) /\ v e. ( ~P U i^i Fin ) ) -> X = U. J ) |
| 87 | 86 | sseq1d | |- ( ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) /\ v e. ( ~P U i^i Fin ) ) -> ( X C_ U. v <-> U. J C_ U. v ) ) |
| 88 | inss1 | |- ( ~P U i^i Fin ) C_ ~P U |
|
| 89 | 88 | sseli | |- ( v e. ( ~P U i^i Fin ) -> v e. ~P U ) |
| 90 | 89 | elpwid | |- ( v e. ( ~P U i^i Fin ) -> v C_ U ) |
| 91 | simprl | |- ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) -> U C_ J ) |
|
| 92 | sstr | |- ( ( v C_ U /\ U C_ J ) -> v C_ J ) |
|
| 93 | 92 | unissd | |- ( ( v C_ U /\ U C_ J ) -> U. v C_ U. J ) |
| 94 | 90 91 93 | syl2anr | |- ( ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) /\ v e. ( ~P U i^i Fin ) ) -> U. v C_ U. J ) |
| 95 | 94 | biantrud | |- ( ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) /\ v e. ( ~P U i^i Fin ) ) -> ( U. J C_ U. v <-> ( U. J C_ U. v /\ U. v C_ U. J ) ) ) |
| 96 | eqss | |- ( U. J = U. v <-> ( U. J C_ U. v /\ U. v C_ U. J ) ) |
|
| 97 | 95 96 | bitr4di | |- ( ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) /\ v e. ( ~P U i^i Fin ) ) -> ( U. J C_ U. v <-> U. J = U. v ) ) |
| 98 | 87 97 | bitrd | |- ( ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) /\ v e. ( ~P U i^i Fin ) ) -> ( X C_ U. v <-> U. J = U. v ) ) |
| 99 | 98 | rexbidva | |- ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) -> ( E. v e. ( ~P U i^i Fin ) X C_ U. v <-> E. v e. ( ~P U i^i Fin ) U. J = U. v ) ) |
| 100 | 85 99 | mpbid | |- ( ( ph /\ ( U C_ J /\ U. J = U. U ) ) -> E. v e. ( ~P U i^i Fin ) U. J = U. v ) |