This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the binomial coefficient, N choose K , outside of its standard domain. Remark in Gleason p. 295. (Contributed by NM, 14-Jul-2005) (Revised by Mario Carneiro, 8-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcval3 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 C 𝐾 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bcval | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) → ( 𝑁 C 𝐾 ) = if ( 𝐾 ∈ ( 0 ... 𝑁 ) , ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 𝐾 ) ) · ( ! ‘ 𝐾 ) ) ) , 0 ) ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 C 𝐾 ) = if ( 𝐾 ∈ ( 0 ... 𝑁 ) , ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 𝐾 ) ) · ( ! ‘ 𝐾 ) ) ) , 0 ) ) |
| 3 | iffalse | ⊢ ( ¬ 𝐾 ∈ ( 0 ... 𝑁 ) → if ( 𝐾 ∈ ( 0 ... 𝑁 ) , ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 𝐾 ) ) · ( ! ‘ 𝐾 ) ) ) , 0 ) = 0 ) | |
| 4 | 3 | 3ad2ant3 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ ( 0 ... 𝑁 ) ) → if ( 𝐾 ∈ ( 0 ... 𝑁 ) , ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 𝐾 ) ) · ( ! ‘ 𝐾 ) ) ) , 0 ) = 0 ) |
| 5 | 2 4 | eqtrd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 C 𝐾 ) = 0 ) |